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Frequency Domain Adversarial Attacks on Deep
Cross-Modal Hashing

Gang Zhou, Shibiao Xu Member, IEEE, Xiaolong Zheng, Member, IEEE, Guiyang Luo, Member, IEEE, and
Fei-Yue Wang, Fellow, IEEE

Abstract—In recent years, multimodal data has experienced
explosive growth. Deep cross-modal hashing models leverage
deep neural networks and hashing techniques to bridge fea-
ture representation gaps by mapping multimodal data into a
unified semantic space, enabling effective cross-modal retrieval.
Binary hash coding enhances storage and retrieval efficiency.
However, these models inherit the vulnerabilities of deep neu-
ral networks, making them susceptible to adversarial attacks.
Current attack methods, which operate in the spatial domain,
fail to recognize that deep hashing models predominantly encode
semantic components in the low-frequency domain—a limitation
that often results in spatial overfitting and misallocation of
the perturbation budget to non-critical frequency regions. To
address these challenges, we propose a frequency domain adver-
sarial attack framework for cross-modal hashing (FACH). This
approach integrates low-frequency masking and multi-teacher
gradient fusion to identify critical low-frequency vulnerabilities
shared across models. FACH generates adversarial examples
with enhanced transferability by aligning semantic perturbations
with spectral characteristics through an inverse transformation
to the spatial domain. Experimental results demonstrate that
FACH significantly outperforms existing transfer attack methods,
unveiling the frequency domain vulnerabilities of deep hashing
models.

Index Terms—Deep Cross-Modal Retrieval, Adversarial at-
tack, Frequency Domain, Deep Hashing

I. INTRODUCTION

ITH the proliferation of social media and network
Wcommunication technologies, the volume of data
across diverse modalities has grown exponentially, creating
a pressing demand for similarity retrieval between these
modalities. However, the inherent differences in feature rep-
resentations between cross-modal data introduce a “hetero-
geneity gap,” which complicates direct semantic similarity
comparisons and presents a significant challenge in cross-
modal retrieval [1]-[4]. In recent years, the application of
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deep learning (DL) to encode different modalities into a
compact, semantically preserving space has achieved remark-
able success in cross-modal retrieval scenarios [5]-[9]. Deep
hashing methods, which integrate DL with hashing techniques
to map high-dimensional data into low-dimensional binary
hash codes, have demonstrated efficient cross-modal retrieval
capabilities while reducing computational and storage costs.
This advancement has facilitated the widespread adoption
of deep hashing technologies across large-scale cross-modal
retrieval domains.

However, recent studies have shown that deep learning (DL)
models are highly sensitive to carefully crafted adversarial
perturbationss created by malicious attackers. These pertur-
bations are often imperceptible to humans but can result in
erroneous decision-making within DL-based systems. This
finding raises significant concerns regarding the reliability of
DL models. Similar vulnerabilities have also been observed
in deep hashing methods [10]-[13]. When subjected to adver-
sarial attacks, cross-modal retrieval systems may experience
substantial deviations in their results, compromising both
accuracy and security. For instance, well-designed adversarial
samples in retrieval can result in the inappropriate retrieval
of content by well-trained deep hashing models, including
violence, pornography, or hate speech, even when such content
should not be present in the results [12], [14]-[17], as shown
in Fig. 1. This not only risks violating laws and regulations
but could also trigger serious societal and ethical concerns.

The reliability of DL-based models is assessed through their
robust performance under various adversarial attacks. Investi-
gating the effects of adversarial perturbations on DL models
is crucial for the design of reliable DL systems. Existing
adversarial attack generation methods can be classified into
white-box and black-box attacks based on the accessibility
of the model’s parameters and structural information [18].
White-box attacks leverage information from the target model
to generate targeted adversarial attacks that induce erroneous
predictions, typically employing gradient-based optimization
techniques. In contrast, black-box attacks are implemented
under conditions where direct access to the target model
is unavailable. The most promising transfer-based black-box
attack method constructs a substitute model that approximates
the target model, designs well-crafted perturbations on this
substitute, and then transfers them to the target model. The
effectiveness of transfer-based attacks relies on the intrinsic
vulnerabilities of DL structures, regardless of the specific
tasks or datasets involved [19], [20]. In real-world scenarios,
the inner workings of target models are often not accessible,
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Fig. 1. Example of an Attack on Deep Cross-Modal Hashing Retrieval. When
a clean sample is input into a deep cross-modal hashing retrieval model,
the model returns images or texts that are semantically related. However,
when a carefully crafted adversarial sample is input, the model may retrieve
images or texts that are semantically unrelated. More seriously, it might even
return privacy-invading photos, violent images, pornographic images, or texts
containing toxic remarks.

rendering transfer-based black-box attacks more practical and
better suited for evaluating a model’s reliability against poten-
tial adversarial attacks [18], [21].

Transfer-based black-box attacks have proven effective at
defeating well-trained deep learning models in many tasks.
However, achieving effective black-box attacks in hashing
retrieval tasks remains challenging. Adversarial transfer at-
tacks targeting cross-modal hashing models typically have
success rates below 1% [14]. Optimization-based transfer
attack methods often perform poorly due to overfitting on
the deep cross-modal hashing substitute model [22]. Recent
research has attempted to generate transfer attack adversarial
examples using generation-based approaches [16], [22], [23].
Both optimization- and generation-based methods rely on
searching for adversarial perturbations in the spatial domain.
Since deep cross-modal hashing models do not encode all
spatial domain information into the hash codes, these full spa-
tial domain search methods inevitably suffer from overfitting,
which reduces the transferability of attacks.

To address the aforementioned issues, we propose a fre-
quency domain-based adversarial attack method against cross-
modal hashing (FACH). Our approach is inspired by ex-
perimental observations that deep hashing models primarily
encode low-frequency information (i.e., high-level semantics
such as coarse object shapes, dominant colors) while largely
ignoring high-frequency details. Specifically, to overcome the
overfitting problem, FACH employs a frequency domain sen-
sitivity loss to capture shared low-frequency semantic compo-
nents by fusing frequency domain gradients from multiple pre-
trained teacher models. This process identifies the vulnerable
regions of different models in the frequency domain. Second,
to address the limited transferability of deep hashing adver-
sarial attacks, we design a boundary-enhanced mechanism
that incorporates distillation learning and reinforces the binary
separation of hash codes, ensuring that adversarial attacks can
be effectively transferred. By converting frequency domain
information into adversarial weights and leveraging the trained
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substitute model, we generate adversarial examples that exhibit
high transferability.
Our contributions are summarized as follows:

1) We propose a frequency domain-aware consensus learn-
ing module to precisely capture cross-model shared vul-
nerable frequency bands.

2) We propose a boundary-enhanced multi-teacher distil-
lation method that enforces hash codes to approach
quantization thresholds, enhancing cross-model attack
transferability.

3) We develop a frequency-guided adversarial example gen-
eration method. To the best of our knowledge, this is the
first attempt to study the vulnerability of deep hashing
retrieval models in the frequency domain.

4) Extensive experiments validate the effectiveness of the
proposed attack method. Our approach outperforms ex-
isting black-box attacks designed for deep cross-modal
hashing methods. This method provides strong valida-
tion of the robustness and reliability of deep cross-
modal hashing models for retrieval in security-sensitive
domains.

The remainder of this paper is organized as follows: Section

II reviews research on deep cross-modal hashing methods in
retrieval and adversarial robustness. Section III presents the
framework and details of the proposed method. Section IV de-
scribes experiments on public benchmarks and compares them
with state-of-the-art methods. Finally, Section V concludes the

paper.

II. RELATED WORK
A. Deep Cross-modal Hashing Retrieval

Deep learning-based cross-modal hashing retrieval methods
have been widely adopted in multimodal data analysis for
their efficiency and discriminative capabilities [2], [3], [24].
These methods are broadly divided into supervised and un-
supervised approaches based on the use of semantic labels
[25]. Supervised methods utilize label information to generate
highly discriminative hash codes. For example, Deep Cross-
modal Hashing (DCMH) [26] integrates feature and hash code
learning into an end-to-end framework. Pairwise Relationship-
guided Deep Hashing (PRDH) [27] adds intra-modal and inter-
modal constraints for compact hash codes, enhancing bit-level
discriminability through decorrelation. Graph Convolutional
Hashing (GCH) [28] applies Graph Convolutional Networks
(GCNs) to capture similarity structures, while Consistency-
Preserving Adversarial Hashing (CPAH) [29], and Deep Ad-
versarial Discrete Hashing (DADH) [30] leverage adversarial
learning to align data distributions and maintain semantic
consistency. Deep Cross-modal Unified Hashing (DCHUC)
[31] introduces a non-symmetric strategy for higher-quality
hash codes. Two-Stage Supervised Discrete Hashing (TSDH)
[6] maps modality-specific representations to semantic binary
codes with discrete optimization to minimize quantization loss.

Unsupervised methods generate discriminative hash codes
without labeled data by capturing semantic relationships be-
tween heterogeneous samples. Deep Joint Semantic Recon-
struction Hashing (DJSRH) [32] uses a joint semantic affinity
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matrix to preserve neighborhood relationships, while Unsu-
pervised Deep Cross-modal Hashing (UDCMH) [33] inte-
grates matrix factorization and binary latent models to reduce
semantic loss. Joint Distribution Similarity-based Hashing
(JDSH) [34] optimizes cross-modal code consistency using
distribution-based similarity measures. Graph-based methods
are also widely used. Aggregation-based Graph Convolu-
tional Hashing (AGCH) [35] constructs an affinity matrix
with multiple similarity metrics and applies an aggregation
strategy to generate unified codes. Deep Graph Neighbor-
hood Consistency Preserving Network (DGCPN) [36] explores
graph neighborhood consistency across modalities. Correla-
tion Identity Reconstruction Hashing (CIRH) [37] combines
identity semantics and hash functions to improve performance.
Unsupervised Contrastive Cross-modal Hashing (UCCH) [38]
enhances cross-modal retrieval with a momentum optimizer
and ranking loss. Contrastive Multi-bit Collaborative Learning
(CMCL) [39] hierarchically aligns global and local semantics
across modalities and generates multi-length hash codes for
efficient cross-modal retrieval.

These methods combine the representational power of deep
learning with the efficiency of hashing, providing robust
solutions for multimodal retrieval tasks and achieving excellent
performance across applications.

B. Adversarial Attack against Deep Hashing Retrieval

In recent years, adversarial attacks against deep cross-modal
hashing retrieval (CMHR) have gradually attracted increas-
ing attention. Existing methods can generally be categorized
into two types: optimization-based adversarial attacks and
generation-based transferable attacks.

Optimization-based transfer adversarial attacks generate
perturbations by optimizing objective functions, enabling ef-
fective transfer. AACH [40] is the first method to generate
adversarial examples by constructing substitute models un-
der black-box conditions to mislead CMHR systems. Deep
hashing targeted attack (DHTA) [12] formulates the attack
on hashing retrieval as a point-to-set optimization problem
and introduces a component-voting scheme to derive an an-
chor code that balances attack performance and perceptual
imperceptibility. THA [41] leverages a PrototypeNet to gen-
erate prototype codes as semantic representatives of target
labels, guides adversarial sample generation by minimizing the
Hamming distance, and enhances model robustness through
adversarial training. NAG [14] exploits white-box model vul-
nerabilities—using random noise to estimate the adversarial
region and identify vulnerable pairs—to guide perturbation
search for targeted black-box transfer attacks on deep hashing
retrieval.

Generation-based transferable attacks typically rely on
generative models to rapidly produce adversarial examples
with improved generalization and to alleviate overfitting in
optimization-based methods. ProS-GAN [16] proposed a gen-
erative adversarial network (GAN)-based attack framework
that first generates prototype hashing codes for target cate-
gories, subsequently guiding the efficient production of ad-
versarial examples, enhancing the attack efficiency and white-
box attack performance. EQB2A [42] presented a query-driven

black-box attack by constructing a counterfeit cross-modal
model, avoiding frequent iterative optimization. Additionally,
TA-DCH [43] extracts fine-grained target semantics, generates
a target prototype code, and seamlessly embeds these into
benign examples via a U-Net—based translator with adversarial
training, yielding imperceptible adversarial examples.

Both Optimization-based and Generation-based transferable
attacks against deep cross-modal hashing retrieval mainly
focus on perturbations within the spatial domain, ignoring
information representation in the frequency domain. Spatial-
domain perturbations tend to capture local sensitivities, caus-
ing overfitting and reducing adversarial example transferability
across different models or datasets. This paper will explore
the generation of adversarial perturbations in the frequency
domain to further improve the generalization and transferabil-
ity of adversarial examples against deep cross-modal hashing
retrieval systems.

C. Frequency-Domain Attacks and Vulnerabilities

In recent years, researchers have conducted in-depth analy-
ses of the robustness and vulnerability of deep neural networks
(DNNs) from a frequency-domain perspective, emphasizing
the critical role of frequency components in model decision-
making. The frequency principle (F-Principle) indicates that
DNNs tend to learn low-frequency information first during
training and exhibit significant sensitivity to perturbations
across different frequencies [44], [45]. Studies have shown that
naturally trained models are highly sensitive to all additive
noise except for the lowest frequencies, while adversarial
training can enhance robustness in high-frequency regions,
often at the cost of degraded performance in low-frequency
areas [46]. Moreover, some works suggest that adversarial
examples are not solely reliant on high-frequency perturba-
tions, as their formation is also influenced by dataset charac-
teristics—highlighting that high-frequency edges and textures
remain important in classification tasks [47]. On the other
hand, frequency-based attack strategies have been proposed,
including analyses of model sensitivity to both high- and low-
frequency perturbations [48], [49], and approaches that gen-
erate adversarial examples by suppressing frequency-domain
details, revealing that DNNs may exploit imperceptible high-
frequency signals for prediction [50]. Some works enhance
adversarial attack transferability by optimizing perturbations
in pixel or frequency space, such as the HA-INN [51] method,
which uses high-frequency perturbations for visual invisibil-
ity, and a frequency-sensitive black-box attack that improves
transferability through Fourier sensitivity [52].

Existing studies have primarily focused on frequency-
domain vulnerabilities in image classification tasks, and no
prior work has specifically investigated the frequency-domain
robustness of cross-modal hashing models.

III. PROPOSED METHOD

In this section, we first formalize the deep hashing adver-
sarial attack problem and introduce the notation. Then, we
present the overall framework.
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A. Problem Formulation and Notations

1) Deep Hashing-based Cross-modal Retrieval: Given a
multimodal dataset U = {(z;,y;,0;)}Y, of size N, where
z; € R? represents the image modality sample, ¢t; € R
represents the text modality sample, and /; denotes the corre-
sponding label. The label I; € {0,1}“, where C is the number
of classes. If the j-th component /; ; = 1, it indicates that
the image-text pair (z;, y;) belongs to class j. In a multi-label
setting, /; may have multiple components equal to 1, indicating
that (x;,y;) belongs to multiple classes.

From a model architecture perspective, a deep cross-modal
hashing model F comprises a hash function 4 and a sign
function sign(-). H is implemented with ImgNet and TxtNet
for the image and text modalities, respectively. The objective
of F is to extract features from different modalities and project
them into a unified hash space via hash mapping, enabling
efficient similarity search. Specifically, hash codes for x; or
y; are generated through the following process:

where hY = H(*; | ©4), and h} is the real-valued output of
the hash function, which approximates the binary hash code
by € {—1,1}%, with K representing the length of the hash
code. The parameter ©4, represents the trainable parameter of
the hash function H.

The semantic similarity between samples from different
modalities is measured using hash distance, where greater
semantic similarity results in a smaller hash distance. The hash
distance is calculated as follows:

distrr (b7, 8) = 5 (K — (b0, 50)). @)

The model H is trained to map heterogeneous multimodal
data to binary hash codes while preserving both intra-modal
and inter-modal semantic similarity. Typically, the model F
is trained using the following negative log-likelihood loss
function:

£ By (550 00T (b)) —log (14 20D
3)
Here, S; ; = 1if ; and y; share at least one common category
label; otherwise, S; ; = 0. During retrieval, both the query
and database samples are converted into binary hash codes,
and semantically similar samples are retrieved based on their
hash distances.

2) Adversarial Attacks on Cross-modal Hashing Retrieval:
In computer vision classification tasks, adversarial attacks aim
to misclassify an adversarial sample x’, which is generated
from the input image z using an attack method, while ensuring
that =’ remains visually indistinguishable from the original
image to human observers. To achieve this, the magnitude of
the adversarial perturbation 7 := z’ — x is constrained to a
level, denoted by ¢, that is imperceptible to human vision, as
summarized below:

) # fe+n),stnl, <e, @)

where

Page 4 of 14

4

llly = /% (Bl + ml? + -+ + |nal?). However, in the
context of cross-modal retrieval, the goal of adversarial attacks
is to generate adversarial samples corresponding to original
samples to fool the cross-modal retrieval model, resulting in
the retrieval of partially or entirely semantically irrelevant re-
sults. Adversarial samples are generated by the attack method

At
z; = A(x;|©4), s.t.||z; — i, <&, (5)

where © 4 is the parameter of A. The above-mentioned
adversarial attack against deep hashing can be formalized as:

rgixdistH(}'(xi) F () =

?

rréaxdistH(]: (@), F (A(z;]0©.4))),s.t.||zi]| <&, (6)
A

B. Overall Framework and Pipeline

As shown in Fig. 2, the proposed FACH framework is
divided into two stages. Stage a) is dedicated to training
a substitute model with strong transferability and comprises
two modules: Frequency Sensitivity Consensus Learning and
Margin-Enhanced Multi-Teacher Distillation. Stage b) focuses
on generating adversarial examples and includes the Frequency
Domain Adversarial Sample Generation module. In the follow-
ing sections, we will provide a detailed introduction to these
three modules.

C. Cross-Model Frequency Sensitivity Consensus Learning

Different models exhibit varying sensitivity to frequency
domain features, which limits the transferability of attack
strategies based on a single model in cross-model scenarios.
To more effectively encode the frequency-domain information
emphasized by different models into a substitute model, Cross-
Model Frequency Sensitivity Consensus Learning is employed
to enhance the cross-model transferability of attack strategies
by enabling the substitute model to learn the consensus of
frequency sensitivity from multiple teacher models.

Specifically, given an input image x € R3*H*W it s
transformed into the frequency domain using the 2D Discrete
Cosine Transform (DCT) [53]:

F(u,v) = DCT(x)

== (2 + 1)u m(2j + v
= ; J;) x(i,7) - cos (T) - cos (T) ,
@)
where F'(u,v) denotes the frequency coefficient at position
(u,v), and H and W denote the height and width of the input
image z, respectively. We use the Inverse Discrete Cosine
Transform (IDCT) to losslessly reconstruct the image from
its frequency coefficients, i.e., x = D;(F'), where D(-) and
D; () denote the DCT and IDCT, respectively. The application
of IDCT after DCT facilitates the computation and optimiza-
tion of gradients in the frequency domain. Subsequently, we
compute the gradient sensitivity of different teacher models T’
with respect to the frequency coefficients:

_ OL(T(Di(F)))

AT(U, ’U) - aF(u U) @ MIOW (U, ’U)a (8)
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o o= (I w3 -6)’

n=1(4,5)€Pn

40 N K
41 OL(H(D;(F))) Lo =30 max (m— 1D (7)) 0)

AS ) = % M ow ) 9 9 n=1i=
fé (,0) OF (u,v) © Miow(1,0) ® N1 '

1 T
44 Lis = nz::l < -sign (T(DI(F(")))) tanh (T(D,(F<n>)))
45 N exp (sim(T(Dr (F™)), T (D1 (F{™)))/7)
46 where, a low-frequency mask M, is applied to retain low- L4 = Z —log - ) )
47 frequency components(with © representing the Hadamard n=t 2 ksti €XP (Slm(T(DI (£ 7)), T(Dr(F, )/ 7 )11
48 product): o . (1)
W \Y v
49 here P denotes the set of positive and negative sample
50 pairs; h; = sign(T,,(x;)) represents the binary hash code
51 of sample x;; ¢ is the similarity threshold; and 7 is the
52 L ifo< < temperature coefficient in the similarity scaling; sim refers to
53 Miow (u,v) =< 77 o= .u, v=T (10) cosine similarity.
0, otherwise.

54
55 D. Margin-Enhanced Multi-Teacher Distillation Learning
56
57 After computing the frequency sensitivity matrices Ar from
58 Here, L; is the proposed frequency sensitivity function based multiple teacher models, we performed a weighted averaging
59 on a deep cross-modal hashing teacher model. There are operation to emphasize the commonly sensitive frequency
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bands. This yields a consensus matrix A., which captures the
aggregated sensitivity across all M teacher models:

M
1
Ac(u,v) = Y Z WAz (u,v) (12)

m=1

Here, W is a learnable weight vector that projects each
teacher’s sensitivity matrix A7, into a scalar importance
score.

Subsequently, we align the sensitivity matrix of the substi-
tute model A with the consensus sensitivity matrix of teachers
using a Jensen-Shannon(JS) Divergence [54] constraint, en-
forcing the substitute model to focus on the low-frequency
spectral regions consistent with the ensemble of teachers.
Prior to the calculation, both A, and A, are passed through
a softmax function to convert them into valid probability
distributions. We propose an alignment loss Ljign:

£align - JS(AC”AS)
! {KL (Ac
2

Hash codes exhibit a non-trivially reversible property during
quantization. For example, a slight perturbation to an image
may change a real-valued hash component from 0.7 to 0.1,
yet its quantized result may still be 1. This insensitivity
to small changes makes it challenging to generate effective
adversarial examples, and the resulting examples often have

poor transferability across models. To address this, we propose
a hinge-based Margin-Enhanced Loss:

1
)5

Lae = EK: max (m — P i, 0) (14)
=1

Here, BSZ denotes the i-th dimension of the real-valued hash
vector from the substitute model, and ¢ is the consensus target
code derived from multiple teacher models. Following the
voting strategy in CSQ [55], the target code is computed as:

1 M
t=sign [ — Y AV 15
St M {as)

where h()) is the hash output of the j-th teacher model,
and sign(-) denotes the element-wise sign function. This loss
introduces a margin m to encourage each dimension of the
real-valued hash vector hg to surpass the target code ¢ by a
fixed threshold, improving the separability and discriminability
of hash codes. As a result, adversarial examples generated
from the model exhibit significantly better cross-model trans-
ferability.

Then, we obtain the overall Margin-Enhanced Multi-
Teacher Distillation objective, which consists of two compo-

nents:
N

Laistin = Z (ﬁgﬁ)gn + ﬁl(vll)g) . (16)

i=1
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E. Frequency Domain Adversarial Sample Generation

After training the substitute model H, we generate ad-
versarial examples based on it. Given a clean image z, we
adopt the widely used Projected Gradient Descent (PGD) [56]
attack to craft adversarial examples (other attack strategies are
also applicable). The adversarial sample z’ is optimized in
iterations of T' (default 7" = 100).

Before optimization is performed, we first transform the
image x into the frequency domain and then reconstruct it
back to the spatial domain after the necessary computations.
This process allows us to leverage the information about the
gradient in the spatial domain to optimize more effectively z’.
Furthermore, when computing the gradient of the adversarial
sample, we incorporate the sensitivity matrix of the teacher
model A, to guide the optimization process. The iterative
update rule is defined as follows:

AFr =154 (AFT—l + - sign (VF;A/Jadv ©) Ac)) ;
Fr=Fy+ AFr, Fy= F(u,v)=D(x),

a7
where AF7p is the cumulative adversarial perturbation in the
frequency domain at iteration 7', § is the maximum allowed
modification for each frequency component, AFp_; is the
accumulated perturbation from the previous iterations, p is
the step size, and the projection operator II|_s 5) maps values
outside [—6,0] to the nearest boundary value within that
interval. We can then derive the adversarial example in the
spatial domain as follows:

&' = Clipg ) (z + j—c.q (D1 (Fr) — z)) (18)

This modification ensures that after reconstructing the adver-
sarial example in the spatial domain, the pixel-wise change
a’ — x is restricted to lie within [—e, €], limiting the maximum
modification per pixel to e.

The adversarial loss L4, is unified as

Lado = %bT tanh (aH(2')), (19)

where v = —1 and b = b, for non-targeted attacks, and
v =1, b= b, for targeted attacks.

Recent studies [57] have shown that deep hashing models
exhibit similar or even identical hash centers. Motivated by this
observation, we leverage the global semantic hash codes of the
input instance x and the attack target x; to enhance the cross-
modal transferability of adversarial examples. Specifically, the
global semantic hash codes b, and b; represent the hash
centers of  and x;, respectively.

To derive the global semantic hash code b, for a given
query q € {z,y,x;:}, we employ a strategy based on weighted
semantic aggregation [58], which combines information from
semantically similar and dissimilar instances:

N;(;I) N[()q)
b, = sign Z wEQ)bgq’p) — Z w](-Q)bg-q’n) (20)
i=1 j=1

The weights wEQ) and wj(.q) are designed to reflect semantic

similarity between the query and its neighbors. They are
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Algorithm 1 Frequency Domain Adversarial Attack Against
Deep Cross-Modal Hashing
Input: Multi-modal training set U; = {(v;,t;, 1)}, M
teacher models 7', untrained substitute model #H, and
query dataset Uj.
Output: Trained substitute model H and adversarial examples
{z'}.
1: Phase 1: Substitute Model Training
2: for each batch of images « in U; do
3:  Transform z to the frequency domain using DCT (Eq.
7).
4.  Compute substitute sensitivity Ay (Eq. 9).
5:  for each teacher model in 7" do
6: Compute teacher sensitivity A, (Eq. 12).
7
8
9

end for
Compute alignment loss g, (Eq. 13).
. Compute margin-enhanced loss Ly (Eq. 14).

10:  Compute total loss Lqistin (Eq. 16).

11:  Update H by minimizing Lgjstil1-

12: end for

13: Phase 2: Adversarial Sample Generation

14: for each clean sample x in U, do

15:  Transform z to the frequency domain using DCT (Eq.
7).

16:  Compute semantic representation for x (Eq. 20).

17:  Compute semantic representation for target x; (Eq. 20).

18:  Compute adversarial loss L,qy (Eq. 19).

19:  Iteratively update the frequency representation (Eq. 17)
to obtain z’.

20: end for

21: Return H and {z'}.

computed as: w; = N%, -5 wj = 5 - (1= s5). Here,
L5 o
577 = W represents the cosine similarity between the
i/3

label vector [ of the query and the label of the corresponding
positive or negative instance.

By pushing the adversarial example’s hash code away from
b, (for untargeted attacks) or aligning it with b; (for targeted
attacks), the generated adversarial examples exhibit enhanced
semantic alignment and better cross-modal transferability. The
pseudocode of our algorithm is shown in Algorithm 1.

TABLE I
DATASET STATISTICS

Dataset Total Train  Query Database Classes
FLICKR-25K 20015 5000 2000 18015 24
MS-COCO 123287 1000 2000 121287 80
NUS-WIDE 195834 10500 2100 193734 21

IV. EXPERIMENTS
A. Datasets and Baselines

1) Datasets: In this study, experiments are conducted on
three widely used public datasets for cross-modal retrieval and
adversarial attack research: FLICKR-25K [59], MS-COCO

Adversarial
Example

Perturbation

(a) (b) (©) (d)

Fig. 3. A comparison of the adversarial examples and perturbations produced
by four attack methods on the deep cross-modal hashing model (UCCH): (a)
ProS-GAN, (b) TA-DCH, (c) PGTA, and (d) our FACH.

[60], and NUS-WIDE [61]. The dataset statistics are shown in
Table 1. For each dataset, we follow the partitioning schemes
commonly adopted in cross-modal retrieval tasks [23], [62]
and preprocess the data according to our research objectives.

FLICKR-25K consists of 25,000 image-text pairs span-
ning 24 distinct semantic categories. After excluding samples
with insufficient label information, approximately 20,000 valid
pairs remain, from which 2,000 pairs are randomly selected
as the query set, while the rest form the retrieval database,
with a subset further extracted as the training set for model
optimization.

MS-COCO includes a large number of images across 80
categories, each accompanied by 5 natural language descrip-
tions. Following standard experimental settings, we partition
10000 samples as the training set, 2000 as the query set, and
the remaining images as the complete database; for the textual
modality, 1024-dimensional features are extracted using a pre-
trained Bert model.

NUS-WIDE collected from Flickr, comprises a total of
269648 images covering 81 concepts. To ensure high data rep-
resentativeness, we select the 21 most common categories, ul-
timately constructing 193734 image-text pairs. In this dataset,
2,100 pairs are randomly extracted as the query set, with the
remaining samples forming the database, and an additional
10500 pairs are drawn from the database for model training.

2) Baselines: We selected six state-of-the-art cross-modal
deep hash retrieval models as the target models for attack in
cross-modal retrieval tasks, including three supervised models
EDH(TSMC-2024) [3], CPAH(TTP-2020) [29], DADH(ICMR-
2020) [30] and three unsupervised models DGCPN(AAAI-
2021) [36], UCCH(TPAMI-2023) [38], JDSH(SIGIR-2020)
[34]. For image retrieval tasks, we apply the CSQ method
with six backbones—AlexNet [63], VGG11 [64], ResNet50
(RN50) [65], ResNet152 (RN152) [65], Inception-v3 (Inc-v3)
[66], and DenseNet161 (DN161) [67]. In cross-model transfer
attacks, one CSQ model with a chosen backbone serves as
the substitute, while the others act as attacked models. To
evaluate the effectiveness of FACH in attacking hash defense
methods, we selected three representative types of defense
mechanisms: SAAT (TIFS-2023) [68], which is based on
adversarial training; NRCH (MM-2024) [69], which adopts
input denoising; and RDPH (TMM-2024) [70], which relies
on regularization.
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TABLE 11
COMPARISON OF ATTACK PERFORMANCE ON THE I2T (IMAGE-TO-TEXT) TASK ACROSS THREE DATASETS, EVALUATED USING MAP AND T-MAP
METRICS (UNIT: %). "ORIGINAL” DENOTES THE MAP WITHOUT ADVERSARIAL ATTACK, WHILE OTHER ENTRIES REPRESENT T-MAP UNDER ATTACK.
THE PERTURBATION UPPER BOUND € IN OUR METHOD IS SET TO 8/255

Attacked models ~ Attack Methods ~ LPIPS MIRFLICKR25k NUS-WIDE MS-COCo
16 32 64 128 16 32 64 128 16 32 64 128
Original 0 72.14 74.21 75.69 76.32 63.22 63.98 65.78 66.46 65.85 66.51 68.22 68.65
DHTA [41] 0.332 82.36 83.69 89.53 91.25 74.65 75.98 77.85 78.91 72.58 73.21 75.89 76.48
ProS-GAN [16] 0.263 83.36 84.69 89.68 90.36 76.24 77.48 78.36 79.65 75.85 76.54 77.58 78.36
EDH [3] TA-DCH [43] 0.215 85.47 86.24 88.97 91.36 78.58 76.36 83.25 84.56 76.69 74.89 77.58 77.21
PGTA [23] 0.196 94.36 93.96 94.55 95.63 88.69 85.69 91.25 92.35 78.52 79.85 82.56 82.47
FACH(ours) 0.158 95.66 95.98 96.85 96.47 90.69 91.25 92.36 93.58 82.35 83.36 85.68 88.47
Original 0 57.14 57.86 60.21 66.74 4521 42.36 44.69 45.12 39.63 40.87 40.63 41.17
DHTA [41] 0.365 78.63 79.32 86.14 88.01 71.35 75.63 78.21 79.94 63.24 64.93 69.21 70.16
ProS-GAN [16] 0.214 77.46 84.28 86.27 86.92 68.39 75.69 79.14 83.56 63.41 66.29 66.37 68.87
CPAH [29] TA-DCH [43] 0.286 80.28 86.02 90.42 90.81 73.52 80.25 81.25 84.67 68.21 71.23 72.47 73.62
PGTA [23] 0.312 93.38 94.64 94.31 94.55 84.25 86.25 87.21 90.35 70.86 73.94 75.98 74.54
FACH(ours) 0.109 95.23 95.63 96.21 95.14 87.25 88.12 90.21 91.36 73.21 73.89 76.58 77.54
Original 0 61.28 61.47 62.74 65.47 49.45 50.45 49.51 49.87 39.65 41.32 45.23 48.93
DHTA [41] 0.307 84.69 85.14 87.24 88.25 74.65 76.77 80.78 82.67 57.13 61.45 65.02 70.54
ProS-GAN [16] 0.256 83.69 86.78 87.36 88.25 70.23 76.32 78.34 82.19 57.98 63.52 68.47 73.21
DADH [30] TA-DCH [43] 0.278 85.74 86.47 87.85 89.36 75.34 81.29 83.97 86.64 61.34 63.87 68.65 70.12
PGTA [23] 0.251 91.25 92.36 92.98 92.63 76.23 79.23 85.34 88.87 65.78 69.76 73.86 77.21
FACH(ours) 0.178 93.25 94.25 95.85 95.87 79.36 83.55 88.58 92.47 71.25 72.54 77.58 78.69
Original 0 61.36 62.14 61.36 63.21 42.36 41.96 43.32 42.39 41.63 40.58 39.67 41.87

DHTA [41] 0.286 77.63 78.47 82.36 83.87 73.21 77.74 80.25 82.36 58.47 61.27 68.78 69.87
ProS-GAN [16] 0.254 78.36 79.63 81.67 83.65 72.36 76.64 78.21 80.72 56.87 63.85 69.74 69.75
DGCPN [36] TA-DCH [43] 0.284 83.25 84.36 84.66 86.36 74.36 75.69 78.36 82.43 62.36 67.96 72.98 75.24

PGTA [23] 0.362 90.25 92.36 91.66 92.45 87.12 87.35 91.25 93.25 69.37 72.14 72.48 76.48

FACH(ours) 0.125 93.36 94.25 96.69 96.87 90.58 91.28 92.81 93.68 74.36 75.69 80.85 78.69

Original 0 75.21 76.21 74.21 76.32 68.23 70.32 72.45 73.23 60.56 63.21 64.44 65.76

DHTA [41] 0.325 87.95 85.36 88.74 89.45 74.63 75.96 76.98 77.36 65.36 66.74 67.25 69.78

ProS-GAN [16] 0.258 88.59 88.54 89.99 91.02 73.36 74.69 76.36 77.09 66.36 67.89 69.36 70.54

UCCH [38] TA-DCH [43] 0.269 92.36 93.69 92.58 92.17 75.36 74.69 76.69 77.39 64.25 63.69 66.58 67.21
PGTA [23] 0.369 93.36 94.56 95.69 95.87 77.25 76.69 78.69 79.74 70.21 70.99 73.25 74.65

FACH(ours) 0.213 95.36 96.36 97.25 97.08 87.36  88.69 91.07 90.62 74.66 76.69  79.63 78.54

Original 0 60.84 62.98 62.67 63.04  40.21 40.11 41.43 42.03 43.45 4256 4397 44.21

DHTA [41] 0.215 73.08 74.87 78.93 79.21 67.23 68.56 74.98 76.32 62.45 63.11 64.34 65.21

ProS-GAN [16] 0.223 74.03 76.23 79.45 78.15 66.23 68.32 74.93 76.12 55.34 56.77 63.45 65.43

JDSH [34] TA-DCH [43] 0.245 73.94 75.09 79.54 78.65 73.12 76.23 77.43 78.32 63.21 64.07 67.24 68.28
PGTA [23] 0.212 78.65 83.98 88.65 89.34 82.45 84,95 85.11 86.23 66.66  71.49 73.21 74.87

FACH(ours) 0.156 8236 83.69 89.63 9158 8536 86.54 88.64 9085 67.69 6898  74.65  76.98

TABLE III
THE TEST T-MAP (%) OF TARGETED ATTACKS AGAINST THE CSQ METHOD WITH 32 BITS AND DIFFERENT BACKBONES ON THE FLICKR-25K AND
NUS-WIDE DATASETS, RESPECTIVELY

Methods LPIPS FLICKR-25K NUS-WIDE

AlexNet VGGII RN50 RNI52 Inc-v3 DNI61 AlexNet VGGIl1 RN50 RNI152 Inc-v3 DNI61

P2p 0.263 60.81 82.93 67.63 62.15 69.13 69.03 53.24 78.57 59.27 52.99 57.16 59.82

DHTA 0.296 67.68 84.41 66.49 66.40 67.22 64.09 60.73 74.51 59.21 56.03 55.85 60.68

VGGI1 THA 0.247 72.51 90.38 78.60 72.07 72.87 76.11 54.55 81.19 58.71 56.68 64.92 55.60
ProS-GAN 0.219 74.18 92.83 80.49 74.54 77.73 83.92 65.58 81.76 68.99 65.63 66.76 85.66

TTA-GAN 0.321 74.89 89.20 88.53 85.56 81.93 84.98 64.28 81.57 68.60 71.46 69.56 70.97
FACH(Ours)  0.103 80.21 96.36 90.36 91.36 86.69 90.48 72.35 88.36 75.36 78.65 72.69 88.37

P2P 0.287 68.20 62.88 91.59 62.99 62.14 65.59 54.74 56.37 74.31 57.37 60.19 59.22

DHTA 0.296 65.05 62.06 89.34 63.17 68.21 72.62 54.29 54.12 78.41 58.96 53.65 60.46

RN50 THA 0.304 7491 74.11 92.21 78.83 69.59 81.25 58.23 55.73 80.30 60.55 65.26 62.92
ProS-GAN 0.324 73.40 76.08 89.28 88.54 74.53 81.68 57.79 63.17 84.22 61.89 59.48 65.68

TTA-GAN 0.333 76.06 88.64 93.04 89.32 86.59 85.05 67.95 72.33 82.26 78.52 77.26 72.11
FACH(Ours)  0.231 82.63 92.36 95.36 92.74 91.87 87.35 72.69 78.47 88.96 82.63 82.69 78.36

P2p 0.236 60.16 61.29 69.30 69.99 66.64 89.41 54.14 56.84 53.53 56.42 60.99 717.06

DHTA 0.269 63.23 66.08 64.02 65.11 66.71 91.52 55.60 60.93 59.69 54.66 56.51 79.87

DNI61 THA 0.312 70.38 72.30 80.63 78.19 74.11 95.69 62.57 56.71 57.48 62.77 64.19 85.29

ProS-GAN 0.325 69.94 81.56 82.96 77.99 69.20 92.63 65.13 64.84 63.52 61.75 64.90 81.85
TTA-GAN 0.315 79.54 86.61 91.04 92.52 83.17 94.16 65.82 72.51 72.32 76.79 75.04 78.37
FACH(Ours)  0.214 86.36 92.49 96.39 93.36 89.32 95.99 71.36 78.65 80.36 82.69 83.36 91.36
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B. Evaluation Metrics and Implementation Details

1) Evaluation Metrics: Following previous works [12],
[23], we adopt two primary metrics to evaluate the effec-
tiveness of the attack methods: mean average precision (mAP
[26]) and targeted mean average precision (t-mAP [12]). The
mAP assesses the overall performance of the retrieval system,
while the t-mAP uses target labels specified by the attacker to
measure the effectiveness of the targeted attack. The mAP is
defined as

=1 1)

where (@ is the total number of query instances, n, is the
number of relevant samples for the ¢-th query, NV represents
the total number of samples in the database, P, (k) denotes the
precision of the top k retrieval results for the g-th query, and
I(r4(k)) is an indicator function that equals 1 if the k-th result
is relevant to the g-th query, and O otherwise. The t-mAP is
calculated in a similar manner, except that the original labels
are replaced with the target labels during evaluation.

2) Perceptibility: We adopt dual perceptibility constraints
to ensure that adversarial examples remain imperceptible. In
the spatial domain, an L,-norm constraint limits the maxi-
mum per-pixel difference between the original image x and
its adversarial version z’:

o — 2l < €. 22)

where e controls pixel-level imperceptibility. Although the
perturbation is generated in the frequency domain, it is trans-
formed back to the spatial domain via IDCT, and its magnitude
remains bounded.

We also use the LPIPS [71] metric to assess perceptual
similarity between clean and adversarial samples, where lower
scores indicate less noticeable differences.

3) Implementation Details: In the experiments, we imple-
mented the proposed FACH model using PyTorch and trained
it on an RTX4090 GPU with 64 GB RAM. The Adaw
optimizer was used with a learning rate of 10~%. ImgNet
adopts VGG11 as the backbone with two additional fully
connected layers. TxtNet is a dense network with three fully
connected layers. The training runs for 20 epochs with a batch
size of 64. The adversarial generation stage is set to 7" = 100
iterations.

TxtNet is first pre-trained using the loss function in Equa-
tion (5), then frozen before distilling ImgNet. Since this work
focuses on the robustness of images in the frequency domain,
adversarial samples are generated only for images, not for text.

We followed six baseline methods (EDH, CPAH, DADH,
DGCPN, UCCH, JDSH), each combined with six different
backbone networks (AlexNet, VGG11, RN50, RN152, Inc-v3,
DN161), resulting in a total of 36 teacher models.

The hyperparameters are set as follows: ¢ — 0 for positive
pairs, ¢ = 2\/? for negative pairs; m = 1.5, u = 0.001, and
6 to 0.3. The value of « follows SAAT [58]: o« = 0.1 for the

first 50 iterations; in the next 50 iterations, it is set to 0.2, 0.3,
0.5, 0.7, and 1 every 10 iterations.

C. Comparison with SOTA attack methods

We conduct a systematic comparison of state-of-the-art
cross-modal adversarial attack methods, including ProS-GAN
[16], DHTA [41], TA-DCH [43], and PGTA [23], on cross-
modal hashing retrieval (CMHR) tasks. Attacks are performed
under 16, 32, 64, and 128-bit hash code settings, with results
shown in Table II. Experimental results show that our pro-
posed FACH achieves superior targeted attack performance,
consistently outperforming existing methods in both t-MAP
and perceptual distortion (LPIPS) across all datasets. DHTA
and ProS-GAN are originally designed for unimodal retrieval
systems, and their performance degrades significantly when
directly applied to cross-modal scenarios. While TA-DCH and
PGTA leverage spatial-domain semantic information to guide
adversarial generation, they fail to capture critical frequency-
domain components, often resulting in spatial overfitting. Our
FACH models adversarial perturbations in the frequency do-
main, effectively capturing shared sensitivities across different
backbones and enabling more precise and efficient perturba-
tion generation, while avoiding the redundant computation
and overfitting risks associated with spatial-domain attacks.
Notably, as shown in Fig. 3 (for visualization, we take the
absolute values of the perturbations and scale them by a factor
of 25), the perturbations generated by methods such as ProS-
GAN, TA-DCH, and PGTA tend to be randomly and diffusely
distributed, failing to concentrate on the key semantic regions
of the image’s main subject. In contrast, our FACH precisely
targets the contours and skeletal structures of the subject while
maintaining a low perturbation cost, thereby enhancing both
the stealth and the directional effectiveness of the attack.

In image retrieval tasks, we evaluate several representative
hashing attack methods, including P2P [41], DHTA [41], THA
[72], TTA-GAN [22], and ProS-GAN [16]. Experiments are
conducted on target models with various backbones—AlexNet,
VGGI11, RN50, RN152, Inc-v3, and DN161—while surro-
gate models adopt different backbone trained under the CSQ
method. The results show that iterative methods such as P2P,
DHTA, and THA suffer from overfitting and underperforming
in all settings. GAN-based methods (TTA-GAN and ProS-
GAN) offer better performance but exhibit instability and
poor generalization across backbones. Our proposed FACH
learns perturbation patterns across diverse attack strategies
and backbones, consistently achieving high and stable attack
success rates across all surrogate-target pairs, which highlights
its strong cross-model transferability.

The results of attacks against three representative hash
defense mechanisms, as summarized in Table IV, demon-
strate that none of the defense methods—SAAT, NRCH, or
RDPH——can effectively withstand attacks from FACH. No-
tably, SAAT achieves better defense performance compared to
NRCH and RDPH, owing to its adversarial training strategy
leveraging adversarial examples. Meanwhile, NRCH, which
employs input denoising, attains slightly better robustness than
RDPH, which is based on regularization techniques.
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TABLE IV TABLE V
ATTACK PERFORMANCE ON THREE TYPES OF ROBUST DEEP THE T-MAP RESULTS OF VARIOUS ABLATION SETTINGS ON
CROSS-MODAL HASHING METHODS CROSS-MODAL RETRIEVAL TASKS
Method MIRFLICKR25k NUS-WIDE Attacked methods CPAH UCCH
16 32 64 128 16 32 64 128 bit 16 32 64 128 16 32 64 128

Original 7252 72.69 7124 7198 60.85 6239 6425 63.14

SAAT O8] pjtacked 8252 8357 8301 8260 5864 5987 6085 6236
RDP [7g)  Ofiginal 6839 6735 6758 6836 5835 5898 5184 567

Attacked  82.54 8204 8254 8321 6536 6614 6687 66.74
NRCH [go) Ofiginal 4S8 7565 7121 7636 6541 6335 6435 6514

Attacked 8532 8435 8321 83.69 70.14 7125 7235 73.64

DWT DWT

DWT-L1 DWT-L2 DWT-L3

Discrete wavelet transformation(DWT)

Fig. 4. Visualization of Multi-Level Sub-band Decomposition After Three
Successive Discrete Wavelet Transforms on the Image. The latter two trans-
forms are applied to the low-frequency sub-bands, yielding four distinct
frequency components at each level.

MIRFLICKR25k NUS-WIDE
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Fig. 5. Comparison of retrieval performance degradation percentages using
different low-frequency components (bar chart). The y-axis shows the percent-
age decrease in retrieval performance compared to using original images. (a)
Performance degradation at three levels of low-frequency components across
various cross-modal retrieval models. (b) Performance degradation at three
levels of low-frequency components across different backbone networks using
the UCCH method.

D. Ablation Studies

To investigate the impact of frequency-domain information
on hash code learning and semantic similarity computation,
ablation experiments are conducted using different levels
of low-frequency signals. A single-level Discrete Wavelet
Transform (DWT) decomposes an image into four sub-bands:
LL, LH, HL, and HH. The LL band contains low-frequency
components that represent the global outline and approximate
content of the image. The LH, HL, and HH bands contain
high-frequency details. The LL band obtained from the first
DWT level can be further decomposed using DWT to produce

wlo T 8325 84.69 86.69 87.74 89.69 9122 93.68 9287
wio G 89.63 9058 9236 91.89 9237 9349 9422 9458

FLICKR-25K  pACH 9523  95.63 9621 95.14 9536 9636 9625 97.08
wio T 6663 6794 6987 7049 6636 6674 69.14 6847
Ms.COco WG 6863 6878 7025 7085 7135 7358 7636 7597
FACH 7086 7394 7598 7454 74.66 7669 7963 78.54
wlo T 6754 6839 70.13 7159 7069 7169 7358 7698
NUSwipE WG 7836 7963 8365 8617 8260 8345 8587 87.48

FACH 8725 8812 90.21 9136 87.36 88.69 91.07 90.62

TABLE VI
T-MAP OF DIFFERENT SENSITIVITY LOSS FUNCTIONS

Attacked methods FLICKR-25K NUS-WIDE
bit 16 32 64 128 16 32 64 128

L1 80.39 8136 83.69 8452 77.96 7854 81.24 8259
Ly 9523 9563 9621 9502 8725 88.12 90.21 9136

CPAH L3 9233 92,65 9354 9514 8023 81.67 8256 8157
Lia 87.69 8852 89.47 90.64 82.69 8345 8478 8574
L1 93.13 9425 96.69 9574 7565 7641 7721 7828
DADH L2 91.02 9221 9375 9587 79.36 8236 88.58 9247
L3 9325 9366 9478 9498 7836 83.55 8536 8647
Lty 84.21 8436 8564 86.14 7054 7121 7247 7354
L1 8236 81.69 8357 8426 8632 87.14 87.69 8848
DGCPN L2 8836 89.57 9036 89.48 86.69 87.41 8857 89.47
L3 8545 8636 87.41 8825 8745 87.14 8836 89.14
Lig 96.36 9425 96.69 96.87 90.58 91.28 92.81 93.68
L1 86.36 87.24 88.63 8724 7824 79.65 8024 79.63
UCCH L2 90.25 90.85 9236 93.65 80.08 79.65 81.69 8247

L3 88.63 8936 9047 9125 7721 7551 7848 7921
Lia 9536 9636 96.25 97.08 87.36 88.69 91.07 90.62

second-level sub-bands: LL2, HL2, LH2, and HH2. Apply-
ing DWT three times yields three levels of low-frequency
signals: LL1, LL2, and LL3. Fig. 4 illustrates how these
low-frequency sub-bands preserve the image’s approximate
content at different scales. Three experimental groups are
constructed using images that contain only LL1, LL2, or
LL3. All high-frequency components are removed. These
low-frequency-only images are used as input to deep cross-
modal retrieval models. Retrieval performance decreases when
high-frequency information is removed. Fig. 5 shows that
the extent of performance degradation varies across different
models and backbone architectures. Some models are more
sensitive to shallow-level low-frequency features, while others
rely more on deeper low-frequency representations. The differ-
ences among backbone architectures cause larger performance
variations than those among model structures. The backbone
plays a key role in encoding low-frequency features. Different
backbones show different capacities in capturing and utilizing
frequency-domain information.

To analyze the roles of the two key components in the
FACH framework, we conducted ablation studies on the cross-
modal retrieval task using two representative retrieval models
(CPAH and UCCH) and three public datasets (FLICKR-25K,
MS-COCO, and NUS-WIDE). Specifically, we designed two
ablated variants: one without the surrogate model training
module (w/o T), and the other without the adversarial sample
generation module (w/o G). As shown in Table V, the complete
FACH method consistently achieves the highest T-MAP scores
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Fig. 6. T-MAP performance with Varied €. (a)MS-COCO,(b)NUS-WIDE.

across all hash code lengths. Removing the training module
(T) leads to a significant performance drop, while removing
the generation module (G) also results in noticeable degrada-
tion. The surrogate model training module (7) helps to com-
prehensively model the cross-modal feature space, whereas
the adversarial sample generation module (G) can produce
visually imperceptible but highly effective perturbations. The
synergy between the two components enables the complete
FACH framework to outperform all ablated variants in terms
of both robustness and attack effectiveness.

E. Hyperparameter Analysis

As shown in Table VI, significant differences exist in how
different sensitivity loss functions affect attack performance.
For the CPAH and DADH methods, the optimal loss function
varies with the dataset and hash code length, indicating that
the selection of sensitivity loss functions should be tailored
according to the specific method characteristics and data
distribution. For the DGCPN and UCCH methods, the best-
performing loss function is L. This can be attributed to the
fact that both DGCPN and UCCH are unsupervised methods,
and L4 is derived from an unsupervised contrastive learning
framework, sharing structural similarity with their training ob-
jectives. This insight suggests that the sensitivity loss function
should ideally align closely with the original model’s training
objective to enhance attack effectiveness and compatibility.

As illustrated in Fig. 6, we further investigate the impact
of perturbation magnitude ¢ on attack performance. The re-
sults indicate that increasing e consistently improves attack
performance, primarily because larger perturbations are more
effective at overcoming model robustness defenses, leading
to greater deviations in the hash outputs. However, excessive
perturbation magnitude may reduce imperceptibility, so it
is necessary to balance attack success rate and stealth by
appropriately controlling the perturbation strength.

V. CONCLUSION

In this paper, we propose a novel deep cross-modal hash-
ing adversarial attack method named FACH. Unlike existing

(b) 2 4 6 8 2 4 6 8 2 4 6 8

approaches that generate adversarial examples in the spatial
domain, FACH operates in the frequency domain. It com-
prises two stages: First, by leveraging a multi-teacher model,
we identify sensitive frequency regions to mitigate spatial
overfitting and enhance hash code discriminability through
boundary augmentation, thereby training a substitute model
with strong transferability. Second, using the trained substitute
model and learned frequency-sensitive information, we gener-
ate perturbations in the frequency domain and map them to
the spatial domain to create adversarial examples with superior
transferability. Experiments on three datasets demonstrate that
our method outperforms state-of-the-art approaches in trans-
fer attack performance. Future work will focus on adaptive
frequency band selection for multimodal scenarios.
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1 Proof of the Properties of Polarization Loss

Definition 1 ( Polarization 1 oss). For each data point x € X and its corre-
sponding output vector h, := U(x; w) € RE | the polarization loss is defined on
the vector hy with respect to a pre-set target binary code t € H as follows:

K
l:ME = Zmax (m — }Als,i . ti, 0) .
i=1
By minimizing the polarization loss (Eq. 3) during the learning phase, mag-
nitudes of each DPN output channel are induced above the threshold m, while
corresponding signs are aligned to the target vector t. Figure 5 illustrates the
distribution of outputs fls, for example images fed into a DPN. Clearly, large
margins push the network outputs further away from zero. It must be noted
that the images are polarized, which is likely observed for misclassified data
points.
Lemma 1. For the output vector hy, it is bounded by the Hamming distance
as follows:

Dy (b,t) < LuE,

for any m > 1 and h, € {(lAzsyl, cee ,iAL&K)}.
Proposition 1. Suppose class C consists of data points {x1,--- ,X|c|} asso-
ciated with a pre-set target t € H in Hamming space. The averaged intra-class

pairwise Hamming distances among the corresponding binary codes are given
by:

1 2
ek Z ’Dh(biybj)gﬁ‘ Z LME.

1<i,j<|C]



Proposition 2. Suppose there are classes Cy,---,Cr with target binary
codes t, and t, and binary hash codes b¥ = ®(x;;w), where i € {1,---,|C,|}.
The inter-class pairwise Hamming distances among the binary codes are:

1 .
z v

1<z#y<L 1<i<|Cy |,
1<5<|Cy|
2-(L—1
<y 20U S
1<x< |C$| i
<z<L 1<i<|Cy |

Proposition 3. The difference between averaged intra-class pairwise Ham-
ming distance and averaged inter-class pairwise Hamming distance is upper
bounded, i.e.

> e X D)

1<i,j<|Ca |

1 .
- 2 ErEl 2 Dalbie)
1<ezy<rt 00 Y i<i<e, |

1<5<|Cy|

L
<y 2|Cx|' > Lue— > Dalts.ty).

1<i<|Co 1<z#£y<L

Remarks:

I. Inequality shows that the averaged polarization loss is a strict upper-
bound of the averaged pairwise Hamming distances between points of the
same class. That is to say, minimizing the RHS effectively minimizes the
averaged intra-class pairwise Hamming distances.

II. In terms of the computational complexity, pairwise Hamming distances on
the LHS is O(|C|?) while the polarization loss on the RHS is O(|C|) only.

ITI. Inequality shows that minimizing polarization losses on the RHS effec-
tively maximizes the averaged inter-class pairwise Hamming distances on
LHS.

IV. According to Proposition 3, the optimization problem of simultaneous
minimizing intra-class and maximizing inter-class Hamming distances, i.e.

min Y ﬁ S Dubibg)

1<z<L 1<4,5<[Cal

S D D DA )

1§m¢y§L‘ =l - 1G] 1<i<|Cy |
1<5<|ey |



is equivalent to the problem of minimizing the averaged polarization loss
over the whole data set, i.e.

min > |clx|' >, Lup (9)

1<z<L 1<i<|Cy




