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Abstract—Hashing has emerged as an efficient mechanism for similar-
ity searching, owing to its computational efficiency. With the evolution of
deep learning (DL), DL-based hashing methods have exhibited remark-
able performance in multi-modal and high-dimensional retrieval tasks.
Despite these advancements, recent studies have revealed vulnerabilities
of deep learning (DL) structures to adversarial attacks, leading to an
intensified focus on adversarial robustness within the DL community.
However, most of these studies predominantly concentrate on supervised
classification tasks. As a result, the methodologies developed in current
adversarial robustness research are not directly applicable to retrieval
tasks. To bridge this research gap, we propose Deep Supervised Ad-
versarial Robust Hashing (DSARH), an end-to-end hashing framework
meticulously crafted to extract robust features from high-dimensional
data, thereby ensuring reliable retrieval performance. Through extensive
experiments conducted on diverse cross-modal and image retrieval
benchmarks, we demonstrate that existing deep hashing models are
susceptible to vulnerability issues. In contrast, our proposed DSARH
method substantially bolsters the robustness of deep hashing models
against a spectrum of adversarial attacks across both the image-text and
image retrieval tasks. Furthermore, DSARH outperforms the state-of-the-
art counterparts, delivering superior cross-modal retrieval performance
on large-scale image-text retrieval benchmarks. This underscores the
critical importance of adversarial robustness research in tackling the
challenges inherent to multi-modal retrieval issues.

Index Terms—Hashing, adversarial robustness, cross-modal retrieval,
image retrieval, deep learning

I. INTRODUCTION

HE rapid advancement of social networks and Web media

content has led to the accumulation of vast amounts
of data from diverse modalities on servers, necessitating an
immediate need for multi-modal similarity search capabilities.
In recent years, research on similarity retrieval, which focuses
on extracting semantically relevant cross-modal information
based on existing query samples, has garnered significant at-
tention and emerged as a pivotal research direction in the fields
of artificial intelligence and data science [1]]. Generally, the di-
mensions of semantically related multi-modal data on contem-
porary social networks can vary significantly, such as photos
on FLICKR blogs paired with their textual descriptions. Con-
sequently, effectively extracting semantic information from
high-dimensional data, regardless of its heterogeneity, presents
a fundamental challenge for accurately quantifying semantic
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similarity and achieving precise similarity retrieval in multi-
modal data contexts [2]. In practice, approximate nearest
neighbor (ANN) methods achieve equitable semantic compar-
isons by constructing a shared semantic-preserving subspace
for diverse data modalities. Hashing-based retrieval methods
further optimize this process by replacing real values mapped
in the subspace with binary hash codes, thereby reducing both
computational complexity and storage costs [3]]. Additionally,
incorporating semantic correlation information into model
development through supervised hashing methods can further
enhance the retrieval performance of hashing techniques [4].

In recent years, the adoption of deep learning (DL) ar-
chitectures for automatic feature extraction has significantly
bolstered the effectiveness of hashing models for retrieval
tasks. DL architectures can discern hidden semantic features
from high-dimensional data, enabling them to make decisions
on complex issues at a level comparable to human expertise
[S]. A multitude of deep hashing models have been proposed
utilizing DL architectures, which have been verified to surpass
traditional hashing models designed using handcrafted fea-
tures [6]. Furthermore, traditional hashing models necessitate
identical encoding for out-of-sample sets, and thus limit their
generalization capability to unseen samples without prior
knowledge. In contrast, DL. models have demonstrated great
advantages in automatic feature learning and representation
learning capabilities. Therefore, DL-based hashing models are
increasingly becoming the predominant approach in state-of-
the-art similarity search studies [7].

While deep learning (DL) architectures have shown promis-
ing capabilities, their reliability is not always as robust as
anticipated. Recent studies have revealed that models designed
using DL architectures are susceptible to small, imperceptible
attacks known as adversarial perturbations [8]. Well-crafted
adversarial perturbations have also been observed to transfer
between different models and datasets. This unveils a more
profound issue: the underlying principles governing regularly
trained DL models diverge significantly from the basis of
human decision-making processes [9]. The susceptibility of
DL models to adversarial attacks has raised concerns about
their applicability to real-world tasks that require high secu-
rity demands, and has led to various proposals for defense
mechanisms and robust training strategies aimed at bolstering
their resilience against such attacks [10]. The benefits of
robust training extend beyond defense; that is, robustly trained
models have shown to extract features aligned with human
recognition, thereby offering more reliable performance and
improved transferability compared to conventionally trained
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Fig. 1: The principles underlying adversarial perturbation generation
methods vary between classification and cross-modal retrieval tasks.
In classification tasks, adversarial perturbations depend on ground-
truth labels to introduce interference information. Conversely, for
cross-modal retrieval tasks, adversarial perturbations are crafted using
alternative data modalities, such as textual descriptions or semantic
similarity matrices, to offer semantic insights.

models. The fundamental mechanisms of widely-used robust
training methods enable models to make accurate predictions
even under strong perturbations. This ability to bypass short-
cuts in samples, while focusing on highly predictive features,
serves to enhance the generalization and reliability of models
[9].

However, it’s worth noting that the generation of adversarial
perturbations and robust training methods have primarily been
designed for classification tasks that involve ground-truth
concept information. The robustness of retrieval frameworks
has not been adequately assessed. While some effective meth-
ods have been proposed for generating adversarial attacks
on retrieval models [11]], [[12], as far as we know, robust
training methods suitable for large-scale retrieval tasks are still
lacking. The main challenge lies in the training methodology
for retrieval scenarios. Traditional adversarial training is con-
ducted in an end-to-end manner by introducing perturbations
to training samples, so as to mislead the model predictions
based on the samples’ ground-truth concepts [13]]. However,
as illustrated in Fig. 1, the optimization of retrieval models
depends primarily on the similarity matrix derived from the
training samples to provide semantic correlation information,
rather than relying on ground-truth labels [1].

To address the above challenges, in this paper, we introduce
a novel method called Deep Supervised Adversarial Robust
Hashing (DSARH) designed to learn robust binary represen-
tations from high-dimensional data. Our approach incorpo-
rates end-to-end adversarial training tailored for supervised
retrieval, integrating the similarity matrix into the process of
generating adversarial perturbations during training. Unlike
traditional classification tasks, our method generates pertur-
bations based on semantic information obtained from other
modalities, in conjunction with their corresponding similarity
correlations. We assume that the learned hash codes encap-
sulate the semantic information of the respective modalities.
By minimizing the distance between hash codes of decep-
tive target samples and semantically irrelevant samples, our
method can effectively generate perturbations that disrupt the
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eval examples of models under attacks. Adding
human-unrecognized attacks on images can effectively misguide well-
trained image-text and image retrieval models. These attacks can alter
the semantic correlation between images and textual descriptions,
leading to degraded retrieval performance.

retrieval performance of the targeted models. Specifically, we
employ the learned binary codes from reference samples in
conjunction with the similarity matrix to formulate a reference
direction. This direction is then combined with the learned
hash codes of target samples to determine the final direction
of the perturbation. Furthermore, we devise an alternative form
of perturbation based on the supervised information of intra-
modality samples, whose direction is aligned with the learned
hash codes of the target samples. These perturbations can be
efficiently generated using the back-propagated gradient of
the learned hash codes on raw samples, facilitating their inte-
gration into end-to-end training processes. Notably, DSARH
consists of two adversarial training components. This dual-
component approach enables the learning of robust features to
construct compact binary hash codes that capture the semantic
correlations and concept information respectively.

Further, DSARH can be effectively utilized for both cross-
modal and image retrieval tasks. Cross-modal retrieval tasks,
particularly those involving image-text pairs, are among the
most practical scenarios [[7]. In such tasks, images often pos-
sess high-dimensional features, whereas textual data typically
have much lower dimensions, leading to significant hetero-
geneity challenges. It is worth noting that existing research
on adversarial robustness predominantly focuses on computer
vision tasks [9]. And the textual data in commonly-used cross-
modal retrieval datasets are always pre-encoded by human
experts [6]. Thus, the robustness analysis for cross-modal
retrieval presented in this paper focuses exclusively on image
data. Specifically, the robustness of deep hashing models for
cross-modal retrieval is assessed based on their performance
when exposed to attacks applied to image samples. Similar
to those for image classification tasks, the magnitudes of
these attacks are constrained to be sufficiently small to remain
imperceptible to the human eye [10].

Through extensive experiments and comparisons with the
state-of-the-art deep hashing methods, we demonstrate that
DSARH consistently outperforms other approaches on several
large-scale cross-modal retrieval benchmarks. This highlights
the efficacy of adversarial training applied to images in
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enabling models to identify more precise semantic features,
thereby establishing a more reliable correlation between het-
erogeneous data types. Adversarial training has been proven
to reveal features in images that are more aligned with human
recognition compared to conventional training methods [10],
potentially assisting retrieval models in bridging the semantic
gap between images and human-encoded text data. In addition
to evaluating the performance of DSARH, we also replicate
several existing deep cross-modal and image retrieval hashing
methods to assess their robustness against adversarial attacks.
Our findings indicate that the performance of all benchmark
models experience significant degradation when exposed to the
generated attacks, as illustrated in Fig.2. Nonetheless, DSARH
continues to deliver competitive retrieval performance across
both cross-modal and image retrieval tasks. This suggests that
hash codes learned by conventional deep hashing models may
not be reliable when facing agnostic attacks, emphasizing
the imperative need for robustness research in retrieval tasks.
Furthermore, we validate the robust generalization capabilities
of DSARH by verifying its ability to defend against various
types of perturbations specifically designed for retrieval tasks.
It is worth noting that adversarial training has been found
to inevitably result in performance degradation across vari-
ous image classification tasks [10]. In this study, a similar
phenomenon is also observed in large-scale image retrieval
tasks. This suggests that additional technologies are necessary
to strike a balance between regular and robust performance
in pure computer vision tasks. In contrast, we demonstrate
that DSARH performs exceptionally well in both regular and
robust scenarios, emphasizing the critical role of robustness in
deep hashing models for cross-modal retrieval tasks. In sum-
mary, our main contributions can be summarized as follows:

e We introduce DSARH, a novel end-to-end adversarial
training framework designed for retrieval tasks. The pri-
mary objective of DSARH is to bolster the reliability of
retrieval models by equipping them with the capability to
defend against meticulously crafted adversarial perturba-
tions.

e We present a gradient-based perturbation generation
mechanism tailored for supervised retrieval tasks, by
exploring the learned hash codes and the samples’ sim-
ilarity matrix. These perturbations can be effectively
obtained during the training phase of hashing models. The
meticulously crafted perturbations can also be utilized to
evaluate the robustness of retrieval models.

o Through comprehensive experiments on publicly avail-
able cross-modal and image retrieval benchmarks, we
underscore the effectiveness of DSARH in bolstering
robustness against various attacks. Moreover,we find
that DSARH proposed outperforms state-of-the-art cross-
modal retrieval hashing methods, showcasing superior
retrieval performance across a variety of cross-modal
tasks.

The remainder of this paper is organized as follows. In
Section II, we review research on deep hashing methods for
retrieval and adversarial robustness. Section III presents the
DSARH framework and its optimization scheme on cross-
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modal and image-retrieval tasks. Section IV details experi-
ments and comparisons with state-of-the-art methodologies on
public benchmarks. We conclude this paper in Section V.

II. RELATED WORK

In this section, we briefly review the deep hashing methods
for retrieval and adversarial robustness research.

A. Deep Hashing Methods for Retrieval

The fundamental principle of similarity retrieval mech-
anisms posits the existence of an ideal subspace wherein
data from different modalities that share identical seman-
tic meanings exhibit closer distances compared to irrelevant
samples [3]]. Subspace-based retrieval methodologies strive to
identify a universal space capable of mapping the semantic
essence of heterogeneous samples. Within this space, semantic
similarity is gauged by the distance between representations
of corresponding samples. In pursuit of this objective, var-
ious efficient techniques have been introduced to navigate
the semantic-preserving space, including Latent Canonical
Correlation Analysis (CCA), Latent Subspace Analysis (LSA),
and Correlated Subspace Learning (CSL) [7]].

Typically, features extracted through the aforementioned
methods are real-valued. However, computing distances be-
tween extensive samples for retrieval can be time-consuming,
rendering it impractical for large-scale datasets. In contrast,
hashing methods which encode learned features into binary
values, present a more feasible alternative based on lower
storage costs and higher retrieval efficiency [14]. There are var-
ious techniques presented to produce individual hash codes for
distinct modalities, including Local Sensitive Hashing (LSH),
Spectral Hashing, and k-means-based hashing. By minimizing
the Hamming distance between hash codes of heterogeneous
samples, data-dependent hash codes prove effective for cross-
modal similarity retrieval tasks like Cross-View Hashing
(CVH) and Multi-Modal Latent Binary Embedding (MLBE)
[7]]. Prominent retrieval hashing frameworks leverage a sim-
ilarity matrix that delineates the correlation among samples
for optimal subspace training. These frameworks encompass
Inter-media Hashing (IMH), Collective Matrix Factorization
Hashing (CMFH), Latent Semantic Sparse Hashing (LSSH),
and Fusion Similarity Hashing (FSH) [15]]. Furthermore, su-
pervised hashing methods that integrate concept information
as supplementary data can yield more compact hash codes
while retaining semantic significance [4]. Examples of such
methods include Semantic Correlation Maximization (SCM)
[16], Semantic-Preserving Hashing (SePH) [2[, and Matrix
Tri-Factorization Hashing (MTFH) [14].

The most formidable challenge for newly proposed cross-
modal retrieval models lies in effectively learning semantically
correlated hash codes while preserving fusion similarity across
multi-modal data, regardless of the inherent heterogeneity
between modalities [[I]. Consequently, multi-modal data are
uniformly encoded by human experts to ensure fair repre-
sentative vectors [2|]. However, this approach lacks scalabil-
ity for future agnostic data, emphasizing the practicality of
automatic feature extraction structures integrated with end-to-
end frameworks [6]]. In contrast, Deep Learning (DL) methods
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excel at automatically extracting features from raw data.
They have proven effective in enhancing the performance of
retrieval models, especially in large-scale multi-modal datasets
[6]. Some notable DL methods include Deep Joint-Semantics
Reconstructing Hashing [17]], Deep Visual Semantic Hashing,
Deep Cross-Modal Hashing (DCMH) [6]], Deep Semantic-
Alignment Hashing (DSAH) [18], and Unsupervised Con-
trastive Cross-Modal Hashing [[19]]. Furthermore, by encoding
large-scale image datasets with uniform hash codes, deep hash-
ing methods can be effectively applied to supervised image-
retrieval tasks. Examples of such methods encompass Deep
Supervised Hashing (DSH) [20], Deep Supervised Discrete
Hashing (DSDH) [21]], Asymmetric Deep Supervised Hashing
(ADSH) [22], SCAlable Deep Hashing (SCADH) [23]], and
Attribute-Aware Deep Hashing (A2-NET) designed for large-
scale fine-grained images [24].

B. Adversarial Robustness Research

In recent years, deep learning (DL) architectures were
demonstrated to be vulnerable against specific attacks called
adversarial perturbations. On visual data, researchers found
that perturbations unrecognized by humans could misguide
well-trained deep classifiers with high confidence [§]. How-
ever, the objective formula for adversarial perturbation gen-
eration is an NP-hard problem, since the decision function is
always not concave, thus is impractical to acquire the exact
solution. Practical techniques try to approximate the solution
by simplifying the procedure with constraints such as L-
BFGS and tangent misguidance toward decision boundary or
using concave function substitution [[8]. Additionally, L-BFGS
involves unavoidable hyperparameters during the solution pro-
cess, leading to excessive complexity in the generation proce-
dure. A more efficient attack mode supposes the DL structure
is completely linear, and the direction that can misguide the
prediction of models with minimum magnitude can be found
by simply obtaining the sign of the gradient calculated from
the loss function on raw samples, called fast gradient sign
method (FGSM) [25]]. Although FGSM and its variants have
been heuristically introduced based on the linearity assumption
of DNN structures, the resulting perturbations have also been
validated on complex nonlinear models [13]]. Moreover, well-
crafted perturbations can transfer across different models and
datasets [12]], highlighting the inherent vulnerability of DL
architectures to small perturbations.

Additionally, a multitude of methods have been developed
to counter adversarial perturbations. These methods either
detect attacked samples or diminish their impact by obscuring
the precise gradient information through random mechanisms.
While these defense strategies can mitigate strong adversarial
attacks, they often fail to enhance the inherent robustness of
DL models. Conversely, adversarial training [13]] is widely ac-
knowledged as one of the most effective defense mechanisms
[9]. Specifically, unlike directly minimizing the loss function,
adversarial training incorporates an inner maximization proce-
dure. This procedure iteratively queries the model to enhance
its resilience against adversarial attacks. Recent studies have
indicated that this min-max training approach can uncover
features aligned with human vision, thereby improving the

4

interpretability of DL models. Consequently, models trained
with robust methods are deemed more reliable than those
trained using conventional methods. The demonstrated robust-
ness and interpretability of these robust training techniques
in real-world applications further underscore their importance
[26]].

Adversarial perturbations were initially designed for clas-
sification tasks, where the attacked samples are deliberately
misdirected away from the ground-truth concept. However,
methods for generating perturbations and adversarial training
tailored for retrieval tasks remain limited. Existing research in
this area predominantly focuses on issues related to Hamming
distance-based retrieval. Notably, the Hash Adversary Gen-
eration (HAG) method [27]] has shown that guiding samples
to modify their Hamming search performance can produce
effective perturbations capable of disrupting well-trained deep
cross-modal retrieval hashing models. Subsequently, the Ad-
versarial Attack on Deep Cross-Modal Hamming Retrieval
(AACH) [28] introduced an effective black-box attack strategy
by maximizing the Hamming distance between semantically
related samples. Recently, several adversarial perturbation
methods have also been proposed to evaluate the robustness
of deep retrieval models [12].

Existing defense methodologies against adversarial per-
turbations in retrieval models are still limited. One of the
most relevant works is the Cross-Modal Correlation Learning
(CMLA) [29]]. While CMLA introduced a training method
that incorporates adversarial examples through regularization,
it lacks an end-to-end training procedure, limiting its scala-
bility for large-scale scenarios. Additionally, CMLA relies on
label information for effective adversarial example generation,
making the training mechanism unsuitable for unsupervised
retrieval tasks. Zhang et al. [30] also proposed an adver-
sarial training approach for cross-modal retrieval. However,
their method did not fully leverage the available supervisory
information, leading to a lack of generalization when ap-
plied to large-scale cross-modal retrieval datasets like MS-
COCO [31]. More recently, Zhou et al. introduced an anti-
collapse triplet defense method to counter adversarial attacks
on ranking-based retrieval models [32]. Nevertheless, to date,
there remains a lack of end-to-end adversarial training methods
directly applicable to large-scale retrieval tasks. Based on
the aforementioned discussions, we propose Deep Supervised
Adversarial Robust Hashing (DSARH) for robust cross-modal
and image retrieval. We offer a theoretical analysis for gen-
erating effective worst-case perturbations and introduce an
end-to-end adversarial training procedure. The effectiveness of
DSARH is demonstrated through comprehensive experiments
and comparisons.

III. DEEP SUPERVISED ADVERSARIAL ROBUST
HASHING

Hashing-based similarity search methods aim to identify an
optimal binary subspace that efficiently preserves the semantic
information of high-dimensional or multi-modal data. Deep
hashing methods leverage deep learning (DL) architectures
to extract latent semantic features from such data. For ex-
ample, these methods may employ deep convolutional neural
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networks (CNNs) to capture semantic features from images.
Deep CNNs have shown outstanding performance on high-
dimensional and large-scale image datasets across various
computer vision tasks. However, DL architectures have been
criticized for potentially over-relying on highly predictive
features rather than genuinely emphasizing semantic under-
standing [[10]]. This vulnerability of DL architectures exem-
plifies this issue. Adversarial training, which defends against
worst-case perturbations during the training process, has been
proven to be the most effective approach for enhancing the
robustness of DL models, especially in tackling computer
vision challenges [9].

In classification tasks, internal worst-case perturbations typ-
ically manifest as guiding model predictions away from the
ground-truth labels of samples. These perturbations can be
optimized by iteratively computing the gradients of models
on the samples. Therefore, adversarial training for classifi-
cation problems represents an end-to-end training technique.
However, in retrieval tasks, semantic information is often
provided in the form of a similarity matrix of samples. As
a result, establishing a direct correlation between the learned
hash code and the semantics of samples becomes challenging.
Additionally, in cross-modal retrieval tasks, supervision infor-
mation is typically presented in the form of intra-modality and
inter-modality correlation matrices. The loss function of deep
hashing models for retrieval is then formalized based on the
distances between hashing codes and the samples’ similarity
matrix [33]]. Hence, incorporating supervised information into
an end-to-end perturbation generation procedure is the central
challenge in designing effective adversarial training meth-
ods for retrieval tasks. Moreover, the supervised information
comprises both intra-modality and inter-modality components.
Effectively learning robust features from these two types of
supervision information presents a significant challenge. In
this section, we first introduce the basic notations of deep
hashing and adversarial robustness. Next, we propose a novel
end-to-end perturbation generation method. Finally, we outline
two adversarial training schemes for cross-modal and unified
hashing for retrieval.

A. Notations and Problem Formulation

Suppose that we have two datasets for retrieval: U =
{U1,U0,,..U,},U; € R:, and V = {Vy,V,,..V,,},V, €
R4, which are collected from the same (¢q; = ¢2) or different
modalities (q1 # g2), where ¢; and g are the dimensions of
two modalities. And the corresponding concept information
for each modality are denoted as Vs = {Yu .1, Yu2, - Yun}
and Yy = {Yy1,Yvo, .Yy} Yui = [yi1,¥i2, --¥ic] €
{0,1}¢,y;; = 1, if U; belongs to class j. The concept
information can be a single label category if each sample
belongs to only one class, or multiple labels if each sample
has at least one ground-truth label.

The principle of existing retrieval approaches asserts that the
semantic similarity of different modalities can be effectively
quantified with specific functions, e.g. Cosine and Euclidean
distance [34]. In practice, while the dimensions of different
modalities are significantly diverse and the dimensions of
certain modalities are extremely high, raw data are always
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encoded as low-dimension features for efficient similarity
quantification. We formalize the features learned from &/ and
V as Fy € R™Fku and F, € R™**v respectively, k;; and
ky are the dimensions of learned features. F can be deep
neural network architectures and the latent variables of DNN
model’s inner feature representation layers are found to contain
rich semantic information [8|]. Then hashing-based retrieval
approaches further encode learned features as binary codes
By = {BY,BY,.BY} ¢ {—1,+1}"*? for more efficient
retrieval computation and less storage space, where d is the
length of hash codes from two modalities for fair semantic
matching. Practically, the overall framework for hash code
generation using DNNs can be formulated as:

BU = Sign(f#ash(fgasc (ua agase)ﬂ e;zbash))a (1)

where féfwe and f,%’as , denote feature representation and
hash code generation structures. 6% and 6% _, are trainable
parameters of two structures respectively. Those parameters
are then optimized on training samples to produce more
discriminative features from different modalities

The neighborhood distances between samples from different
modalities are always formulated as their Hamming distance in
hashing space: disty (By, By) = 1(K — (Bu, By)), where K
is a constant to maintain positive distance values. Optimal hash
codes should exactly preserve different modalities’ semantic
meanings: distH(B?,B}}) < Vudistz(BY,BY) on cross-
modal datasets, where the ¢-th sample in &/ and j-th sample
in V share same semantic labels, while the k-th sample in V
have no relevant semantic concepts.

The semantic information of retrieval scenarios are always
provided as the similarity matrix of samples: S € [0, 1]™*™
that represents whether the ¢-th sample in / and j-th sample in
V have shared labels. Given the pairwise multi-label similarity
matrix, S; ; = 1 if the sample shares at least one label and is 0
otherwise. Based on the semantic information, the probability
of a similarity matrix under produced hash codes can be
formalized as:

. _ [ (3 (B, BY)), Sij=1

pisis 1) = { Y5 50 2o

2
where BY is the hash code of i-th sample in /. Then hash
codes can be optimized through minimizing the negative log-
likelihood [[15]:

1 1 (pU\T (RV
£ = -5 (58 (BT (B) ~tog (14200
3)

B. Adversarial Perturbation Generation for Retrieval

Adversarial perturbations can be formalized as restricted
inequality problem on computer vision tasks: f(x) # f(x +
n), s.t.||nll, < e, where f(-) is the objective model, ||5||, =

L(Im|P +[n2lP + -+ + [nalP) restricts the magnitude of
the perturbation. And d is the length of the perturbation,
which always has the same dimension with raw images. The
norm of the perturbation is restricted to being smaller than
a constant € to maintain the semantic meaning of the image.
The perturbations on text datasets are slight changes, such as
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transforming alphabetic positions, that are difficult for humans
to recognize. However, the textual data used in multimodal
datasets were always encoded as numerical information [28]].
Thus, we will not consider adversarial attacks on textual
modality throughout the entire article.

Adversarial perturbations were initially designed for clas-
sification tasks based on samples’ ground-truth labels and
objective model’s predictions [8]. Yet, for the retrieval task,
the loss function cannot be explicitly obtained. Instead, an
intuitive way is to iteratively query the retrieval set and update
the perturbation until the prediction of the objective model is
altered:

Jizjdisty (BY*,BY) < disty (BY*,BY),s.t.[|nll, <e, (4)

where BY* is the hash code of attacked sample U} = U; +17;,
7; is the perturbation produced for U;. And j denotes the index
of samples that have same concepts with U; while [ represents
the index of irrelevant samples. Notably, the first part of equa-
tion [ is an NP-hard problem that relying on extensive linear
searching. Thus, we propose a practical substitute mechanism
to approximately formalize this objective:

rr}ngj,k(distH (B?*,B}})—distH (Bzf’ﬂB}:) )os.tnillp <e,

)
where j and k denote indexes of samples that have the same or
different concepts with ;. The above function is also an NP-
hard problem, through explicitly specifying the bounding type
of attacks as infinity norm IS, = maxy |n; ;| < €, we could
obtain the further simplified solution, where 7; ; denotes the
j-th value of 7;. Notably, /5 bound is widely employed as
the most commonly used adversarial attack restriction manner
for computer vision modalities, it restricts the maximum value
of the perturbation added on pixels to guarantee the attacked
images could evade human recognition.

Practically, on image classification issues, {5 -bounded at-
tacks can be approximated using the sign value of the gradient
of the loss function on input data [25]]. Considering a fully
linear classifier f(x) = wT -z + b, the fast gradient sign
method (FGSM) regards ) = ¢ - sign(w) = ¢ - sign(V f(z)))
as the worst-case perturbation with [ restriction that can
interference the prediction of classifier. Further, iteratively
updating the perturbation using smaller step size FGSM could
produce approximated worst-case perturbation on non-linear
structures:z™ = clip. (z* + & - sign (V4zL(z*,y))), where
clip.(-) is an loop computation operation that updates z* and
restricts the magnitude of added perturbation x* — 2 on each
dimension is smaller than the set variable, and & is the step
size of each iteration.

Based on the above formulation, the Zio restricted perturba-
tion on retrieval issues can be formulated as:

i = Clipi—: {771 + € : VUIEL]@(<B?7B}}> - <Blz/{aBZ>)} 3 (6)

we use (-,-) to represent the Hamming distance operator
distg (-,-) for simplification. As shown in Equation 2| the
probability under the binary codes is encoded with sigmoid
function d(z) = 1/ (1 + e~ ") for model training. Thus, for a
sample U; and the corresponding hash code Blf, the worst-case

6

direction of perturbation that can maximize objective model’s
loss function can be formalized as:

U pVv U pV
O((B; B8>Bu<1sv B %{S_JBV S By —

%(Bu) B;)BV/T ((BM)TBV) + ez(Bu) BVB}:/T ((BM)TBV>}
(7)

where () = 1+e2%. Then, based on the category of samples,
the above equation can be reorganized as:

((BZ/{ BV> BM BV 1 ( S
OBY 2
WAVE:

k
1—7—611]“)

1+e 7 )BV (Si7k_
— (BY) B
®)
Then, it can be found that the direction towards worst-
case direction is positively correlated with B}/ if §;;, =1, or
negatively correlated if S; ; = 0. In addition, the correlation
relationship with Vj, is precisely contrary with that of V;.
Thus, we propose a novel item that is positively correlated with
the worst-case direction: sign (S; ; — 0.5) - BY % = {4, k}.
Moreover, while the produced binary hash codes are sign
values, B}’ can be further replaced with BZ{’ ® B}} . B}},
where ® denotes the direct product operator: A ® B =
(A1 -By,Ay - By,...Aq-Bg),A,B € RY Then, the direc-
tion of perturbation is obtained as a specific direction toward
the objective hash code itself:

Vi = sign (Si; — 0.5) - (B ® BY) @ BY, )

which is a composition of hash codes from another modality
and the corresponding similarity matrix. Similarly, for the
learned features, by normalizing each row of learned features
Fu and Fy using the Iy norm to Fy; and Fy, we can further
use the cosine similarity metrics ]:'u]:"y € R™*"™ to measure
the inner neighborhood structures of two modalities. Thus,
the perturbation for feature similarity measurement can be
formalized as:
Ve = sign (8,5 —05) - (K o F)) K, 10
~U .

where F, denotes the normalized feature of sample Uf;. The
above perturbations are effectively delivered from the learned
features using the given similarity matrix. For supervised re-
trieval tasks, samples’ ground-truth labels ), can also provide
additional semantic information as hash codes By. Then using
the loss function of the hash codes between a sample and
corresponding label information can also produce effective
perturbation to impede objective model’s performance.

Finally, based on the attack directions acquired from sam-
ples’ hash codes, we can effectively approximate the perturba-
tion on raw images using the projected gradient descent (PGD)
approach:

0By

My = clipe (nu +£- s<s(S —0.5)- (By @ By)® 8L[>>
(11)

s(+) represents the sign(-) function for simplification. The
total number of iterations for each perturbation is a variable
that based on the sample and objective model’s corresponding
prediction. Notably, under sufficiently many steps and small
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step size, PDG-based attacks can be regarded as the worst-
case perturbation even for non-linear DNN models [10].
Specifically, we present the detailed procedure of perturbation
generation in Algorithm [T]

Algorithm 1 Adversarial Perturbation Generation Algorithm

for Cross-modal Retrieval

Input Query dataset Uy, = {Uqg1,Uga, ..
ples
Retrieval dataset from another modality V
Objective model G(-)
Similarity matrix S € [0, 1]9*™ of query set and retrieval
set from another modality.

QOutput Perturbations of the query dataset.

1: Initialization: mini-batch size and total number of itera-

.Ugq} with d sam-

tions.

2: for each iteration do

3 repeat

4: for each mini-batch do

5: Get mini-batch similarity matrix Sy, € [0, 1]**™

6 Get hash codes By, of query set under objective
model G(-);

7: Get hash codes of retrieval set By,

8: Perform back-propagation and get FGSM step of
query set through [0 and [10] using Sy, By, and By;

9: Obtain clipped perturbation 7, through

10 end for

11:  until (model prediction altered or reaching maximum

iterations)
12: end for

13: Return my,

C. Adversarial Training for Cross-modal Retrieval

Building upon the perturbation generation approach de-
scribed above, we then propose an adversarial training ap-
proach for retrieval issues. Adversarial training and its deriva-
tives can offer certified robustness against specific perturba-
tions with restricted magnitudes [9]]. The principle of adver-
sarial training is to perform an inner procedure searching
for worst-case perturbations and update the the model under
the produced attacks through an iterative min-max training
manner: Ey;mingmax, L (2’ | 6), st x; € B(x;,¢), where
B (z;,¢) is a magnitude restricted area around z;, the magni-
tude is always quantified as p-norm bound [z’ — x|, < e.

Firstly, to optimize retrieval models, the activation of hash
code B(-) is replaced with the differential hyperbolic tangent
function tanh(-): Hy = tanh (wT -fu) JFu € R¥ku g ¢
RFuxc ¢ is the length of obtained hash codes. Then the
semantic distance between samples can be quantified as the
Hamming distance between learned hash codes: Ly = K —
(Hy, Hy). Typically, differential hash codes can be optimized
through minimizing their similarity with signed values to
improve the accuracy of obtained hash codes:

minCy = E; [|BY — BY|) + o E; |[HY —BY|>, (12)

where « is a variable that depends on the distribution of cross-
modal datasets [34].

*****For Peer Review Only*****

Then, to improve the semantic preserving performance of
hash code, based on the semantic matrix of training samples,
the hash code generation structures can be optimized through
optimizing the trainable parameters 6;,; of the hash code
generation structure of H(-):

ming, B, ; (Si,j . (HZ;’)T ~BZV — log (1 + e%(H?)T‘B}})) .
(13)
We use the sign value of hash codes in (By ® By) to fix the
direction of the gradient as constant for back-propagation.
The exact gradient of the hash code generation structure Hy,
on U can be effectively obtained using the chain rule through
deep structures. To perform adversarial training on retrieval
issues, we should firstly acquire the worst-case perturbations
for inner maximization process. As demonstrated in Equation
[I0] the maximum item can be effectively solved by iteratively
querying the model and updating the worst-case perturbation:

U; = clipe {u +&-5(s(Si; —05)-BY @BY - g'gz‘ } ,
(14
where Uf;" denote the produced adversarial example by adding
perturbations on samples.

In addition, we also perform supervised adversarial training
to learn robust intra-modal discrimination features in data.
Similar with the cross-modal hashing process, the negative
log-likelihood of the similarity matrix under the produced hash
codes By, can be formalized as:

£ - (g8 BT (B) — tog (1460000,
5)
We could also produce effective perturbations using the se-
mantic information from other samples. Specifically, the per-
turbations are added on samples to change their semantics
from other samples of the same modality:

Ur = clip. {u; + - s(s(Si; —05) - BY @ BY . AL } .
(16)
Towards now, we have produced two types of perturbations
to attack the performance of cross-modal retrieval models. The
former is added on U to interfere the cross-modal similarity of
learned hash codes, and performing adversarial training against
such attacks promotes the model to learn robust features
to establish reliable correlation between different modalities
of samples beyond datasets’ heterogeneity. The latter is to
interfere the intra-modal similarity, we execute adversarial
training against those attacks to enhance the robustness of the
learned semantic representation features by the intro-modal
hash code generation structure. Furthermore, two types of
perturbations can also be integrated as:

* _ 1 * oHY
ui = Cllpe {Uz +€ . S(S(Siﬁj — 05) : AB : TDZ} ’
Ap = (B @ Bf) ® (B © B}).

The ultimate objective function is composed of the intra-modal
and inter-modal negative log-likelihood loss functions:

L=L5UYV)+a- Ly UU +B-Ly(V,V).  (18)

where L3, is composed of both the standard and robust
parts: L5, (U, V) = Ly(U,V) + X - Ly(U*,V) The process

amn
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of robust cross-modal retrieval is shown in Algorithm [2] and
Fig.3.

Finally, to better understand the principle of adversarial
training on retrieval issues, we rewrite the objective function
on a simplified hash net with only one neural network layer.
Considering the inner product as the distance quantification
function of learned hash codes from two modalities: £ =
K — (HY)T - HY, the FGSM step on H; can be written as

n==¢ (I- tanh? (w{ -U)) - s(wy) - tanh (wy - V),
19)
then, by adding the produced perturbations using FGSM on
U, the prediction of the model updates as:

HU* =tanh (w] - (U + - A sign (wy) - tanh (wy -V))
=tanh (w{ U+ & A-|wi| - tanh (wy -V)).
(20)
Notably, since the item A = I —tanh® (w{ - i) is a constant
larger than O that measures the learned and the binary hash
codes. Then, the loss function of the cross-modal retrieval
modal is updated as the distance between w{ -U +&- A-|w: |-
tanh (wy - V) and wy - V. Obviously, to minimize the above
two features, w; is trained not only to minimize the difference
between the learned hash codes from two modalities, but also
small perturbations offered by its L1 norm value. Thus, the
principle of adversarial training is similar with the L1 norm
regularization item added on training process against over-
fitting. Differently, for adversarial training, the penalization
term & - A - |wy| - tanh (wy - V) also relies on the value of
ws. This establishes more intimate connection between two
modalities, so as to reduce the heterogeneity problem between
modalities with significant differences in dimensions.

Algorithm 2 Robust Cross-modal Retrieval Algorithm

Input The training set of the cross-modal dataset U € R¥X9
and Vr € R*%2 with ¢t samples
Objective model G(-)
Similarity matrix S € {0,1}"** between two modalities

1: Initialization: Network learning parameters (e.g., learning

rate, momentum, optimizer).
Mini-batch size
Iteration number

2: for each iteration do

3:  repeat

4: update learning rate

5: for each mini batch do

6: Get mini batch similarity matrix;

7: Generate hash codes of two modalities;

8: Produce perturbations of image samples based on
Equation

9: Update the whole model based on Equation [I§]

10: end for

11:  until (Objective function converged or reaching maxi-

mum iterations)
12: end for

8

D. Attack Production and Training Scheme for Unified Hash-
ing

Robust training can also be employed on unified hashing
issues. Considering a single modality retrieval task, where the
overall loss function can be formalized on training samples:

L=Ei; (Lu (BB}, Yi;)), Lu=(1-Y,;)
disty (BY,BY') + Y, ; - max(K —disty (BY, BY) ,0),
21
where Y; ; = 0 if sample Uf; and U{; share same concepts,
and 1 otherwise. While the training process executed on all
samples requires overly large computational and storage cost.
Practically, unified hashing models are always optimized under
randomly sampled training set [22]:
n—m T 2
ming, Ev,cue (B? (Bg’) - c.SM) G
j=1
where Ur = {Ury,Ura, ..., Ur,,} and U denote the training
set and retrieval set that contain m and n —m samples respec-
tively. S € {—1,1}*(»=™) represents similarity matrix of
the training and retrieval set, S; ; = 1 means two samples U,
and U; share same labels and S; ; = —1 otherwise. Notably,
the hash codes of training samples and retrieval set need to be
synchronously optimized through the entire training process.
Thus, the training procedure can be divided into two steps.
Firstly, the training samples combined with retrieval samples
and corresponding similarity matrix are employed to optimize
the hash code generation structure:

T 2
Ly = ming, E; ; ((H? | 6u/) (B?) — c.Si,j) . (23)

The inner maximum procedure is performed by adding spe-
cific perturbations on training samples to attack the semantic
similarity between training samples and retrieval samples.
Notably, the hash codes on the database must be updated
along with those of the hash structure, and they should be
updated asynchronously. By fixing BY, the objective function
of perturbation for U; can be formalized as:

n—m Ur. . a T_ o 2
II}’?X; (Bif (Bj) c Sw) , (24)

which can also be approximated by the back-propagated
gradient on the learned hash code:

Vgir = (BQ’FB? e sm») BY. (25)

Obviously, the gradient of the loss function depends on both
the semantic similarity and the hash codes of the retrieval
samples. (BZ{’FB? —c- Sid') is greater than O if the training
and retrieval samples have dissimilar concepts and the hash
codes are not optimal, and otherwise it is less than 0. There-
fore, when the two samples are not relevant, the worst-case
direction is in direct proportion to th_ Thus the perturbation

direction can be modified as S; ; - BZ;[. Similar with Equation
[[4] we can rewrite the objective function of perturbation as:

~ aH{/lr
n; = clip, <§~sm : (B?F@B?) ® —t ) (26)

ou;
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Fig. 3: The principle of the DSARH (Deep Semantic Adversarial Robust Hashing) framework. DSARH validates the robustness of the model
by training it to resist and effectively handle these adversarial attacks, thereby enhancing its overall performance and reliability in cross-modal

retrieval tasks.

Moreover, a regularization item between learned hash codes
and binary codes is also introduced to enhance the accuracy
of learned hash codes:

_ 2
Lo=E;, {(Hﬁ* (Bgf)T —c-s,,j> e (HY —B?)Q}.

27)
Then, by simplifying the learned features Flf* and trainable
hash codes HZM* of the attacked sample as z; and u;. The
training process of hash code generation structure can be
performed by back-propagating the loss function on the hash
features:

T -
%ﬁj _21Ej{<ui (BI;’) c~Si7j>B?+2’y~(uiB?)}
@(1—u?).
(28)

Secondly, the objective function for the retrieval set’s hash
code updating can be formalized as:

T 2 _ 9
Ln =Ei; {(BZ{[ (H?> —c Sm‘) +7- (Bzf - H%)
(29)

where H?F denotes the hash codes of corresponding samples
of the training samples in the retrieval set. Notably, while the

size of retrieval set is overly large, the optimizing process
of the hash codes of retrieval set can be simplified through
updating the hash codes on a column-by-column column basis
[35]. Specifically, we use u to denote the trainable hash code
of the retrieval set, then we expand the above formula as:

Ly = (uﬂT)2 —2c-tr (uTSﬂ) —2v-tr (uﬂlf) + const, (30)

ur is the simplified representation of HYr.

Further, by constructing a new hash matrix to pad the
training set matrix, ensuring that it has the same dimen-
sions as the retrieval code, i.e., constructing a matrix with
dimensions identical to the retrieval code and zero-padding
the parts that do not belong to the training code: uw =
[0,0,.. .7,L1,0,...um,...0]—r € R™*¢ can be created. Then,
the above equation can be written as

( ) —2tr( (c-uTS—F'y-ﬂT))—Fconst
(vt ) + tr (up) + const,

3D

where p = —2c¢-u'S — 2\ - @', and const is a constant
that depends on the elements in @ that do not correspond to
the samples in the training set, since the hash codes of these
samples remain constant during the second step update phase
thus can be regarded as constants . Then we could optimize
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the above loss function using the discrete cyclic coordinate
descent algorithm [36]. Specifically, u is optimized column
by column, i.e., we update each bit of the hash code while
fixing others. We let u,; and 4, to denote the i-th column of
w and the matrix of « that exclude the i-the column. Then, the
value contributed by ., on the loss function £ (u.;) can be
calculated as:

AT
L (Uy;) = tr (ﬂ*i (ZUIiﬁ*iﬂ*i + p*l)) + const.  (32)

Considering the final hash codes are sign values, the solution
to minimize L (u.;) can be acquired as:

T = — sign (2auTa n p;l.) . (33)

Finally, we present the whole procedure of robust single modal
retrieval in Algorithm [3]

Algorithm 3 Robust Single Modal Retrieval Algorithm

Input Database dataset U = {U;,Us,...U,}
Hash code generation model G(-)
1: Initialization Mini-batch size
Iteration number.
2: for each iteration do

3:  repeat

4: Randomly sample data from the database dataset to
construct the training set Ur;

5: Obtain the similarity matrix between the training and

retrieval set S € {—1,1}mx(n=m),

for each batch size do
Get mini-batch similarity matrix;
Generate retrieval set’s hash codes u by fixing
G(-)’s parameters;

9: Produce attacks for the training set based on Equa-
tion 26}

10: Update G(-) based on back-propagated gradient
using Equation

11: Iteratively updating the retrieval set’s hash codes u

using Equation [33] by fixing model’s parameters.
12: end for
13:  until (Objective function converged or reaching maxi-
mum iterations)
14: end for

IV. EXPERIMENTS

In this section, we conduct a comprehensive performance
evaluation of DSARH and compare it with state-of-the-art
deep hashing methods across various cross-modal and image
retrieval benchmarks.

A. Datasets and Evaluation Protocol

We assess the performance of cross-modal retrieval models
using WikiPedia, FLICKR-25K, NUSWIDE, and MS-COCO.
Additionally, we evaluate the performance of image retrieval
models using large-scale NUSWIDE and MS-COCO datasets.
The basic description of each dataset is presented as follows:

Wikipedia [34] consists of 2866 image-text pairs compiled
from Wikipedia articles representing the 10 most populated

10

categories. The text data were initially processed using a pre-
trained Latent Dirichlet Allocation (LDA) model, resulting in
a probability distribution with 10 dimensions. The dataset is
randomly divided into two parts for training and testing. The
training set comprises 2173 documents, while the remaining
693 documents are allocated to the test set.

FLICKR-25K [37]] consists of a total of 25,000 image-
text pairs collected from the Flickr website. Each pair is
annotated with one or more unique concepts. The text data are
encoded as 1386-dimensional bag-of-word (BoW) representa-
tions. Following the methodology outlined in [6], categories
with extremely low occurrence frequency were removed, re-
sulting in 24 remaining concepts. For experimental purposes,
we randomly designate 1000 pairs for the query set, 5000 for
training, and allocate the remaining pairs for retrieval.

NUSWIDE [38] is a multi-modal dataset collected from
the Flickr website. The original NUSWIDE dataset comprises
269,648 images categorized into 81 concepts, with text data
encoded as 1000-dimensional bag-of-words (BoW) vectors.
While NUSWIDE serves as a benchmark for both cross-
modal and single image retrieval tasks, it is notably large
and imbalanced. Following the approach outlined in [22], we
reconstructed the dataset by focusing on the top 21 concepts.
Subsequently, as suggested by [39], we randomly selected 100
and 500 image-text pairs per class to form the query and
training sets for the cross-modal retrieval task, respectively,
with the remaining pairs designated for retrieval. Moreover,
adhering to the methodology proposed by [40], we selected
5000 samples to constitute the query set for image retrieval,
with the remaining samples designated as the gallery.

MS-COCO [31] comprises a total of 123,287 English
samples, with each image accompanied by five textual de-
scriptions. Following the splitting set of [41], we randomly
designate 5000 images for the query set and another 5000
images for the validation set, leaving the remaining 113,287
samples for training. Additionally, MS-COCO can serve as an
image-retrieval evaluation benchmark [42].

Three evaluation protocols are employed in this article
to thoroughly assess the retrieval performance of bench-
mark models. Mean Average Precision (mAP) is the most
commonly-used metric for retrieval accuracy evaluation. For a
query sample, mAP calculates the mean retrieval performance
on given query set and retrieval set: 3 Z,ﬁil p(k)d(k), where
M is the count of alternative retrieval samples that share
relevant labels with the query sample, p(k) is the precision
of the top k retrieved samples, and §(k) denotes whether the
k-th sample is semantically relevant with the query sample
(1 if relevant and O otherwise). Obviously, the greater mAP
implies better retrieval performance on single-label datasets
where samples have only one ground-truth semantic label.
However, for multi-label datasets, §(k) could not accurately
quantify multi-category retrieval performance. Instead, we also
introduce Normalized Discounted Cumulative Gain (nDCG)
and Average Cumulative Gain (ACG) for multi-label datasets.
The nDCG is obtained as: nDCGQp = 377, 2,
where r; is the number of shared labels between the query
sample and the i-th retrieval sample, p denotes the number
of top p retrieval samples. Z is a constant to guarantee
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the normalization attribute of nDCG, which is always set
as the nDCG value under the exact retrieval circumstance.
Notably, nDCG penalizes the lower sort of the retrieved
samples, differently, ACG directly calculates the mean of the
total concepts shared between query and retrieved samples:
ACG@p = % P 7 i = k if the retrieval sample and
query sample share k identical concepts. Following [22] and
[40]], we set p of both nDCG and ACG as 100, and M in mAP
is set as the total number of the query samples.

B. Benchmark Configuration

In recent years, numerous deep and shallow retrieval models
have been proposed. Shallow models, designed for handcrafted
features, have traditionally served as baselines for comparing
the performance of state-of-the-art retrieval methods. While
these shallow models are designed based on handcrafted fea-
tures, it is impractical to devise corresponding attacks against
them. Therefore, they act as benchmark baselines for assessing
the standard performance of retrieval tasks. We implemented
the most renowned shallow cross-modal retrieval models using
the code generously provided by the authors. Specifically, we
evaluate the cross-modal retrieval performance of SePH [2],
CVH [3]], LSSH [43]], SCM [16], STMH [44]], SRLCH [45]],
DLFH [46] and MTFH [47] on the lightweight cross-modal re-
trieval datasets. The lightweight datasets utilize BoW or SIFT
features to encode raw image and text content. Additionally,
We refer to the experimental results from [48] to establish a
comparison benchmark, which include several representative
deep hashing models including UKD [49], DBRC [50] and
UGACH [51]]. Furthermore, we retrained several deep cross-
modal hashing models, including DJSRH [17], AGAH [52],
SSAH [53], DCMH [6], DSAH [18]], DADH ([54], DGCPN
[55], and UCCH [19], following the methodologies outlined
in their respective papers. The initial codes were generously
provided by the authors of these papers. Subsequently, we
assess the robustness of these models using the distance-based
attack proposed in Section III.

We set several commonly-used deep and shallow image
retrieval models including ITQ [56], LFT [57], FashH [58],
ADGH [59], COSDISH [60]], SDH [36], CSQ [61], DSH [20],
ADSH [22], DSDH [_21]], GTelecomNet-CSQ [62]], SCADH
[63], SGDH [64] and A%-NET [24] as the benchmark for
evaluating the performance on image retrieval tasks, we obtain
most of the experimental results from [22] that share same
experimental settings. Moreover, we re-train nine state-of-the-
art deep single image retrieval models including SDH, CSQ,
DSH, ADSH, DSDH, GTelecomNet-CSQ, SCADH, SGDH,
and A2-NET for robustness evaluations. Moreover, we also
provide the Normalized Discounted Cumulative Gain (nDCG)
and Average Cumulative Gain (ACG) performance of each
method to evaluate their multi-label retrieval performance.
Notably, we provide the detailed network configuration for
model setup in the Supplementary Material.

C. Comparisons with Deep Cross-modal Hashing Methods

In this section, we evaluate the regular cross-modal retrieval
performance of DSARH and other deep hashing baselines. For

*****For Peer Review Only*****

a fair comparison, we vary the hash code length from 16 to
128 (i.e., 16, 32, 64, 128) and record the mAP, nDCG, and
ACG scores on four benchmark datasets. TABLE I presents
the quantitative comparison with state-of-the-art deep hashing
methods on MIRFLICKR25k, NUS-WIDE and MS-COCO.
Additionally, the /—T (using image to retrieve text) and T—1
(using text to retrieve image) mAP performance and precision-
recall curves of deep hashing benchmark baselines are dis-
played in TABLE I and Fig. 4. Moreover, we also provide the
nDCG@100 and ACG@100 performance comparisons in Fig.
5.

We observe that DSARH has delivered competitive mAP
performance on large-scale datasets, outperforming most of
the state-of-the-art deep hashing baselines. Only AGAH [52]]
and UCCH [19]] yielded more competitive mAP results in the
I—T task of NUS-WIDE. Specifically, AGAH [52] adopts
an adversarial learning guided multi-label attention module
to enhance feature learning. This module enables the model
to learn discriminative feature representations while maintain-
ing cross-modal invariance. UCCH [19]] utilizes contrastive
learning to explore performance similarity between image-text
pairs rather than labels. It employs an effective contrastive loss
function, to maximize instance-level differences and minimize
cross-modal differences. However, our DSARH approach is
more competitive on large-scale retrieval datasets, and DSARH
has achieved the best multi-label retrieval performance on all
benchmarks. Thus, DSARH is more proficient at discovering
semantic features from high-dimensional images to establish
a more precise correlation between heterogeneous data.

The superiority of our approach lies in the effectiveness of
adversarial training for robust feature extraction from high-
dimensional data. The significant difference in dimensions
between images and textual information poses a heterogeneity
problem that hinders the establishment of exact semantic
correlations in cross-modal retrieval tasks. While modality-
specific hash functions using DL architectures could enhance
the feature representation capacity compared to shallow unified
hash codes, DL architectures often overly rely on predictive
features rather than semantic representations [10]. Training
against perturbations can encourage DL-based models to dis-
cover more discriminative and robust features from high-
dimensional images, thereby mitigating heterogeneous issues.
Furthermore, the robust feature extraction capacity of adversar-
ial training can improve the transferability of DL architectures
[9, enhancing the semantic representation of learned hash
codes on out-of-the-sample sets. The exceptional performance
on multi-label evaluation sets further validates the value of
robustness for reliable cross-modal retrieval.

D. Results of the Robust Cross-modal Retrieval Performance

We assess the robustness of deep hashing benchmark base-
lines against adversarial attacks using perturbations generated
for image samples. Following commonly-used robustness eval-
uation metrics [28], we employ the proposed infinity norm
bounded and non-targeted white-box attacks, as described in
Section III, on image samples from the evaluation set. Sub-
sequently, we assess the retrieval performance of benchmark
baselines to determine their robustness. Specifically, we retrain
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TABLE I: Regular and Robust Comparison with the State-of-the-Art Deep Hashing Methods

MIRFLICKR25k NUS-WIDE MS-COCO
Task Mothods
16 32 64 128 16 32 64 128 16 32 64 128
DBRC [50] 0.5921 0.5924 03935 04046 04114 04023 0.5857 0.5918 0.5716 0.5882 0.6137 0.6316
UGACH [51] 0.6767 0.6935 0.5974 0.6153 0.6272 0.6382 0.7025 0.7066 0.3212 0.3517 04771 0.4672
DJSRH [17] 0.6321  0.6562 0.4551 0.4883 04994 0.5249 0.6697 0.6725 0.6754 0.7197 0.7244  0.7246
AGAH [52] 0.7381 0.7621 0.6182 0.6345 0.6466 0.6425 0.7114 0.7258 0.5712 0.5913 0.5855 0.5771
I—-T SSAH [53] 0.6462 0.6793 0.4728 04949 0.5215 0.5266 0.6914 0.7012 0.7188 0.7226  0.7314  0.6887
(Regular) DCMH (6! 0.7152  0.7232 0.6382 0.6518 0.6577  0.6599 0.736 0.7371  0.6092 0.6174 0.6229 0.6253
DSAH [65] 0.6851 0.6932 0.5563 0.5842 0.6034 0.6116 0.7034 0.7093 0.7152 0.7221 0.7316  0.7324
UKD [66] 0.7111 0.7132  0.6153 0.6331 0.6352 0.6424 0.7237 0.7196 0.5023 0.5792 0.5564 0.6146
DGCPN [55] 0.7282  0.7411  0.6213 0.6331 0.6512 0.6551 0.7492 0.7513 0.5932 0.6234 0.6338 0.6416
UCCH [19] 0.7322 0.7387 0.6788 0.6811 0.6588 0.6629 0.7527 0.7566 0.6012 0.6418 0.6273  0.6562
DSARH(ours)  0.7325 0.7592 0.7262 0.7286 0.6612 0.6655 0.7552  0.758 0.7382 0.7427 0.7339  0.7358
DJSRH [17] 0.5811 0.5852 0.3938 0.3964 0.4002 04054 0.5921 0.5912 04012 04123 0.4195 0.4296
AGAH [52] 0.5852 0.5892 04128 0.4326 0.4402 04382 0.5974 0.6013 0.3252 0.3332 0.3414 0.3283
SSAH [53] 0.5824 0.592 0.3943  0.4401 0.4032 04112 0.5966 0.6125 04117 04218 04232 0.4082
DCMH [6] 0.6032 0.6083 0.4154 0.4292 04443 04454 0.6172 0.6253 04412 04512 0.4464 0.4545
1—-T DSAH [65] 0.5816  0.5842  0.4027 0.4158 0.4232 04291 05913 05995 04264 04316 0.4337 0.4286
(Attacked) UKD [66] 0.5917 0.5936 05111 0.5142 0.5146 05172 0.6113 0.6154 03116 0.3154 0.3063 0.3372
DGCPN [55] 0.5882 0.5913 0.5081 0.5112 0.5172 0.5213 0.6124 0.6112 0.3553 0.3728 0.3883  0.3939
UCCH [19] 0.5831 0.5829 0.5112 0.5133 0.5154 05162 0.5856 0.5894 0.3363 0.3625 0.3246  0.3327
DSARH(ours) 0.6352 0.6332 0.5216 0.5225 0.6227 0.6244 0.667 0.6733  0.6424 0.6453 0.6414  0.6383
DBRC [50] 0.5941 0.5955 05944 0.5936 0.4252 04212 0.4282 04363 0.6254 0.6662 0.7017  0.7223
UGACH [51] 0.6765 0.6921 0.7033 0.7072 0.6021 0.6123 0.6281 0.6377 0.3818 0.3973 0.4822 04715
DISRH [17] 0.6294 0.6586 0.6601 0.6823 0.4761 0.4892 0.5354 0.5366 0.6412 0.6868 0.7018 0.7223
AGAH [52] 0.7562 0.7866 0.7977 0.8018 0.6362 0.6691 0.6753 0.6744 0.6117 0.6186 0.6222 0.6196
T—I SSAH [53] 0.6383 0.6694 0.6836 0.6852 0.4887 0.4948 0.5266 0.5392 0.7126 0.7284 0.7193  0.6792
(Regular) DCMH (6] 0.7416  0.7452 0.7567 0.7636  0.6202 0.6343  0.6435 0.6486 0.6197 0.6168 0.6186 0.6211
DSAH [65] 0.6782 0.6926 0.7025 0.7186 0.5801 0.5985 0.6154 0.6166 0.7053 0.7116 0.7087  0.7232
UKD [66] 0.7056  0.7052 0.7213  0.7236  0.6292 0.6558 0.6554 0.6617 0.4991 0.5683 0.5412 0.6376
DGCPN [55] 0.7182  0.7221 0.7457 0.7486  0.6283 0.6391 0.6552 0.6563 0.5966 0.6251 0.6332 0.6344
UCCH [/19] 0.7211 0.7252 0.7414 0.7454 0.6813 0.6838 0.6837 0.6856 0.6082 0.6514 0.6655 0.6667
DSARH(ours)  0.7063  0.7092 0.7884 0.7946  0.6884 0.6891  0.6902 0.699 0.7045 0.7517 0.7316  0.7362
DISRH [17] 0.5782  0.5854 0.5923 0.5987 0.3983 0.4092 04147 04286 04282 0.5111 0.5516 0.6112
AGAH [52] 0.5912  0.5953 0.6022 0.6114 04226 04362 0.4447 04533 03985 0.3926 0.4012 04116
SSAH [53] 0.5776  0.5857 0.5962 0.6026 0.4037 0.4113 0.4152 04284 0.2282 0.2313 0.2481 0.2535
T—1 DCMH [6] 0.6066 0.6112 0.6133 0.6257 04176 0.4292 0.4321 0.4433 03554 0.3422 0.3611 0.3492
(Attacked) DSAH [65] 0.5833 0.5872 0.5962 0.6013 0.4094 04122 0.4223 04352 04184 04233 0.4167 0.4346
UKD [66] 0.5811 0.5825 0.5916 0.5943 0.5044 05112 0.5127 0.5196 0.2868 0.2923  0.2912  0.3021
DGCPN [55] 0.5762 0.5822 0.5883 0.5914 0.4897 0.4955 0.5016 0.5032 0.3314 0.3453 0.3462 0.3411
UCCH [/19] 0.5432  0.5433 0.5455 0.5486 0.5014 0.5015 0.5056 0.5112 03535 0.3673 0.3657 0.3592
DSARH(ours) 0.6062 0.6043  0.6042  0.6051 0.518 0.5259 0.5306 0.5311 0.6111 0.6234 0.6157 0.6146

several benchmark deep hashing models, including DJSRH
[17], AGAH [52], SSAH [53]], DCMH |[6], DSAH [18]], UKD
[66], DGCPN [55], and UCCH [19], and conduct a series of
robustness evaluation experiments.

Based on the extensive experimental results presented in
TABLE I, we have pinpointed the vulnerability of DL archi-
tectures in retrieval tasks, mirroring findings in other computer
vision tasks [67]. Specifically, Fig. 2 showcases examples of
retrieval performance under both regular and robust models.
It suggests that perturbations added to images, which might
be imperceptible to human observers, can significantly al-
ter their semantics from the viewpoint of retrieval models.
Consequently, traditional training approaches that solely min-
imize triplet loss functions struggle to capture semantics in
high-dimensional images that align with human recognition.
Furthermore, unlike supervised classification or recognition
tasks, we have verified that learned hash codes from textual
data can also be used as targets for generating effective
perturbations. Additionally, incorporating hash codes into end-
to-end adversarial training can improve the retrieval models’

capability to establish more robust correlations across diverse
modalities.

In addition, we also assess the robustness of benchmark
models under different types of adversarial attacks that are
specifically crafted for cross-modal retrieval tasks on the
NUSWIDE dataset, including Noise [68]], CMLA [29], DACM
[69], and AACH [28]]. TABLE II presents the / — T mAP
performance obtained under varied attacked types, and we
also provide the complete experimental results in TABLE II
and TABLE III of Supplementary Material. It can be observed
that the mAP values of benchmark models on both /—T and
T—1 tasks of large-scale cross-modal datasets are significantly
degraded. Furthermore, we find that the proposed DSARH
can also achieve comparable mAP performance under attacked
circumstances.

Additionally, we present the nDCG performance under
attacked conditions in Fig. 1 of the Supplementary Material.
It can be found that the multi-label retrieval performance
of benchmark methods degrades significantly, whereas the
proposed DSARH consistently achieves competitive robust
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performance. Thus, even though DSARH doesn’t have direct
access to the ground-truth concepts of samples, it can still
promote models to extract more accurate semantic features
from images, facilitating the establishment of more reliable
correlations between heterogeneous data.

E. Comparisons with Shallow Cross-modal Hashing Methods

We also provide a comprehensive comparison with the
most prominent shallow hashing methods. For fair compar-
ison, we extract the learned features from the penultimate
layer of deep convolutional classifiers as input for shallow
models. In TABLE III, we present the mAP performance of
benchmark baselines and the proposed DSARH on Wikipedia
and NUSWIDE, and a more comprehensive comparison is
presented in the TABLE I of Supplementary Material. We
observe that shallow models are more proficient on the small
Wikipedia dataset. The main reason lies in the fact that
DL architectures are always composed of a huge number of
parameters, thus samples required to acquire out-of-the-sample
generalization for DL models are much larger than those for
shallow models [70].

Number of bits

(f) MS-COCO(T — 1)

32
Number of bits S umber of bis

(d) NUS-WIDE(T — 1) (e) MS-COCO(I-T)
the State-of-the-Art Deep Hashing Methods

However, those shallow models often encounter perfor-
mance degradation on large-scale datasets. Since DL-based
retrieval models are more proficient on large-scale datasets.
Moreover, the features learned by DL based classifiers may
not be very consistent with features used for retrieval, feature
representations need to be fine-tuned to adapt to new tasks for
shallow models [I2]. Therefore, addressing the vulnerability
issues of DL architectures presents a promising direction for
advancing large-scale cross-modal retrieval tasks.

F. Results of Single-Modal Retrieval

In this section, we present a comprehensive comparison
of the regular and robust performance of DSARH on image
retrieval tasks with the state-of-the-art deep hashing methods.
We re-trained SDH [36]], CSQ [61], DSH [20], ADSH [22],
DSDH [21]], GTelecomNet [62]], SCADH [63]], SGDH [64]] and
A2-NET for robust evaluation. Adversarial perturbations
are produced using hash codes and the corresponding semantic
relation matrix from a subset of the retrieval set and added to
the query set to interfere with targeted models.

The mAP of benchmark baselines and DSARH on NUS-
WIDE and MS-COCO are displayed in TABLE IV, respec-
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TABLE II: /—T Comparison with the State-of-the-Art Deep
Cross-modal Hashing Methods under Attacked Circumstance
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TABLE IV: Comparison with the State-of-the-Art Image Re-
trieval Methods

Attack Mothods NUS-WIDE

16 32 64 128
Original 0.6577  0.6599 0.7361  0.7371
Noise [68] 0.6674  0.6536  0.7152 0.7214
DCMH |6} CMLA [29] 0.4824  0.4985 0.5669 0.5636
DACM [69| 0.4021  0.4058 0.4652 0.4711
AACH [28] 0.5012  0.5123 0.5936  0.5863
Original 0.4994  0.5249 0.6697 0.6725
Noise [68] 0.4856  0.5299  0.6539  0.6696
DJSRH [17] CMLA |29} 0.3612  0.3652  0.4569  0.4685
DACM [69| 0.3017 0.3074 0.4025 0.4111
AACH [28] 0.3856  0.3925 0.5162 0.5225
Original 0.6512  0.6551 0.7492  0.7513
Noise [68] 0.6621  0.6325 0.7263  0.7469
DGCPN [55] CMLA [29] 0.4869 0.4952 0.6014  0.6025
DACM [69] 0.3825 0.3947 0.4698 0.4717
AACH [28] 0.5236  0.5265 0.6242  0.6325
Original 0.6588  0.6629  0.7527  0.7566
Noise [68] 0.6152  0.6523  0.7425  0.7369
UCCH [19] CMLA |29} 0.4625 04635 0.5414 0.5426
DACM [69] 0.3954 0.4011 0.4847 0.4919
AACH [28] 0.4825 04858 0.5714 0.5808

Original 0.6612  0.6655 0.7552  0.758
Noise [68] 0.6539  0.6712  0.7514  0.7489
DSARH(Ours) CMLA [29] 0.5525 0.5625 0.6458  0.6524
DACM [69] 0.5241 0.5248 0.6014  0.6127
AACH [28] 0.5825 0.5833  0.6758 0.6787

TABLE III: Comparison with the State-of-the-Art Shallow
Hashing Methods

Mothods WIKI NUS-WIDE
16 32 64 128 16 32 64 128

SePH (2] 02687 0.2918 0.3051 0.3086 0.5303  0.5381 0.5415  0.5437
CVH |3 0.1257  0.1212  0.1215 0.1171  0.3687  0.4182  0.4602  0.4466
LSSH [43 02141 02216 02218  0.2211 0.39 0.3924  0.3962  0.3966
CMFH |[71] 02416 0.2214 02302 0.2337 0.3523  0.3587 0.3596  0.3579
GSePH_rand |72 02835 0.2916 03033  0.3114 05185 0.5395 0.5457 0.5516
SCM |16 0.1725  0.1564  0.1523  0.1531  0.5106  0.5361  0.5439  0.5507
STMH [44 0.1941  0.2476 02504 0.2519 0.4364 0.5529 0.5907 0.6128
SRLCH [45] 0.3318 0.3526 03269 0.3622 0.6158 0.6411  0.6421  0.6555
DLFH |46 02916  0.2988 03217 0.3525 0.6111  0.6444  0.6521  0.6497
MTFH [47 03211 0.3526  0.3429 0.3625 03121  0.3254 03124 0.365
DSARH(ours) 02742 02856  0.2933  0.3021  0.6385 0.6476  0.6528  0.6571
SePH [2] 0.6349  0.642  0.6649 0.6707 0.6203  0.6354 0.6372  0.6445
CVH (2) 0.1185 0.1034  0.1024  0.099 03646 0.4024 0.4339 0.4225
LSSH [43 0.5031  0.5224  0.5293  0.5346  0.4286 0.4248 0.4248 0.4175
CMFH |71] 0.612  0.5446 05599 0.5652  0.3524 0.3564 03573 0.3562
GSePH [72] 0.6458  0.6631 0.6723  0.6748 0.6128  0.6429  0.6572  0.659
SCM |16 0.1579  0.1421  0.1323  0.1268  0.4863  0.505  0.5138  0.5182
STMH [44 0.5828  0.6114  0.6251 0.636  0.6737  0.706  0.7228  0.7284
SRLCH [45] 0.7214  0.7111  0.7028 0.7311 0.7011  0.7139  0.7288  0.7327
DLFH |46 0.6511  0.6632 0.6819 0.6714 0.7124  0.7454  0.7765  0.7336
MTFH [47 07011 0.7025 0.6964  0.6922 0.4112  0.3555 0.4151 0.5214

DSARH(ours) 0.6259  0.6325 0.6478  0.6506  0.7125 0.7461 0.7296  0.7344

tively. It can be observed that the retrieval performance is
significantly degraded under the proposed adversarial pertur-
bations. Notably, we did not directly utilize ground-truth label
information to generate attacks; instead, only the semantic
correlation matrix was provided. Therefore, the learned fea-
tures for correlation measurement may not be semantically
meaningful enough. Furthermore, we observe that DSARH
achieves the best robust performance on both datasets. This
indicates that the proposed asymmetric adversarial training
mechanism can effectively enhance the robustness of retrieval
models on large-scale image datasets.

However, we find that the standard retrieval performance of
DSARH degrades on both datasets. The standard and robust
trade-off issue of adversarial training is also widely prevalent
in other computer vision tasks [9]. This suggests that the robust
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Mothods NUS-WIDE MS-COCO

8 16 32 64 12 24 36 48
ITQ [56] 0.7141  0.7361  0.7463  0.7553  0.5782  0.6162  0.6513  0.6535
LFH [46 0.7122  0.7682  0.7952  0.8142  0.6543  0.6844  0.6927  0.6952
FashH 58] 0.7279  0.7697  0.7825 0.8048 0.6738  0.6756  0.6742  0.6767

ADGH |59 0.7219  0.7353  0.7474  0.7526 - - - -
COSDISH_[60! 0.7801  0.7903  0.7929  0.7974  0.6555 0.6745 0.6918  0.7014
SDH [36 - - - - 0.5444  0.5527  0.5575  0.5632
CSQ (ol - 0.7722 - 07772 0.6379  0.7025 0.7141  0.7183
DSH [20] 0.6532  0.6881  0.6954 0.6993  0.6825 0.6936  0.6888  0.7022
ADSH |22 0.7937  0.8537 0.8638 0.8728 0.8334 0.8454 0.8559  0.8597
DSDH |21 0.7617  0.7537  0.7925  0.7904  0.7032  0.7111  0.7187  0.7224
GTelecomNet-CSQ [62 0.5513  0.5655 0.5812  0.5716  0.7029  0.7089  0.7121  0.7112
SCADH [63] 0.6088  0.6212  0.6337  0.6397 0.7885 0.7895 0.7926  0.7969
SGDH (64 0.4811 04996 0.5016 0.5059 0.7812 0.7844 0.7862  0.7916
A2-NET |24 0.7956  0.8321 0.8471 0.8636  0.8211  0.8285 0.8314  0.8533
DSARH(ours) 0.6243  0.6288 0.6519  0.6672 0.8316 0.8429 0.8443  0.8464
CSQ (61 - 0.2488 - 02601  0.1827  0.1957 0.2124  0.2096
DSH |20 0.2324 02466  0.2565 0.2565 0.2255 0.2515 0.2482  0.2615
ADSH |22 02602 02662 0.2732  0.2759 0.2632 0.2749  0.2859  0.2795
DSDH (21 0.2483  0.2443  0.2609  0.2627  0.1746  0.1765  0.1815  0.1827
GTelecomNet-CSQ [62 0.3217  0.3297 03545 0.3514 0.3511  0.3534  0.3497  0.3386
SCADH [63] 0.3452  0.3539  0.3666  0.3785 0.3127 0.3229  0.3562  0.3555
SGDH [64 0.3696  0.3555 0.3684 0.3816  0.3335  0.3325 0.3416  0.3414
AZ-NET |24 03325 03415 03654 0.3745 04569 0.4685 04752  0.4788
DSARH(ours) 0.4767  0.4747  0.4683  0.4091 0.5619 0.5654 0.5657 0.5713

and regular performance cannot be improved simultaneously
using adversarial training on image retrieval issues. While
several other baselines are more competitive on regular im-
age retrieval. Specifically, SCADH approaches tag refinement
through a matrix decomposition problem without accounting
for textual contextual similarity during compact feature learn-
ing. And SGDH proposes a binary matrix decomposition-
based approach that preserves data structure and utilizes label
information more effectively to guide hashing learning. There-
fore, concept information is crucial for achieving effective
image retrieval performance.

Furthermore, we evaluate the robustness of DSARH against
adversarial examples generated from classification tasks. Uti-
lizing a pre-trained ResNet50 as our baseline model, we craft
attacks driven by ground-truth information using the PGD
approach. TABLE V showcases the /—7 and [—/ (using
image to retrieval image) performance of both regularly trained
and adversarially trained retrieval models. It is evident that
adversarial examples can effectively transfer across different
contexts, and DSARH can mitigate the impact of these attacks.
This underscores the transferability of adversarial attacks
between classification and retrieval tasks. From the vantage
point of regular retrieval models, the semantic interpretations
of the attacked samples undergo alterations. Additionally,
the robustness of retrieval models can be bolstered without
necessitating ground-truth label information. This suggests
that the similarity matrix can also furnish valuable semantic
insights for conducting adversarial training, thereby enhancing
inherent robustness.

G. Parameter Sensitivity Analysis

The key innovation in our DSARH involves incorporating
an adversarial training regularization term into the initial loss
function. These adversarial perturbations are generated using
the objective model’s current parameters and training samples.
We experiment with various configurations to validate the
efficacy of this component. The hyperparameters utilized in
DSARH comprise A, which balances the regular and robust
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TABLE V: Retrieval Performance of Against Adversarial
Samples Generated for Classification Tasks

Task  Target attack model NUS-WIDE
16 32 64 128
I—-T Regular Model 0.5563  0.5621  0.5963  0.6002
Robust Model 0.6363  0.6375  0.6363  0.6295
Target Attack 8 16 32 64
I—1 Regular Model 0.5412  0.5464 0.5556  0.5621
Robust Model 0.5825 0.5941 0.6123  0.6455

components in the loss function, and e, representing the
maximum magnitude of the generated perturbation at each
iteration. Furthermore, we adjust the total number of steps
of PGD during the training process.

Specifically, A\ represents the weight of robustness in the
objective function. The objective function is a regular triplet
loss function when A is set to O, while the loss function
becomes a completely min-max training mechanism when
A = 1. € denotes the maximum magnitude of the perturbations
added to each pixel of training images, which is restricted to be
small enough to avoid human detection. Typically, € is selected
from the set 2/255,4/255,8/255 for normalized images [9].

We display the cross-modal retrieval performance of
DSARH on three datasets with varied A in Fig.6. We tried
different settings from O to 1 with an interval of 0.1. It can
be observed that the mAP performance of the retrieval model
was significantly improved with the introduction of adversarial
training. However, the mAP value starts to decrease with the
further increase in the proportion of the adversarial item.
Additionally, the optimal proportion differs across different
datasets. This indicates that involving adversarial training can
promote models to discover more discriminative features.
However, an excessively large proportion of the adversarial
item could hinder the model’s regular performance. According
to these observations, we see that robust features of images
can help establish more exact correlation for heterogeneous
modalities. Yet, the semantic information brought by robust
features is insufficient to replace regular features.

TABLE VI: Robust mAP performance with Varied Perturba-
tion Magnitude €

Image — Text Text — Image

Dataset

e@?2 e@4 e@8 e@?2 e@4 e@8
MIRFLICKR25K  0.5286  0.5925  0.6305 0.5002  0.5725  0.6012
NUS-WIDE 0.5625  0.6356  0.6696 0.4563  0.5126  0.5365
MS-COCO 0.5312  0.6036  0.6356 0.5123  0.5862 0.6196

We also investigated the effect of e. Specifically, TABLE
VI shows the performance at varying e. We observe that
the mAP results are relatively robust at 2/255, 4/255 and
8/255, while the performance at 2/255 is significantly lower.
This suggests that 2/255 is excessively small to explore
discriminative features from images. ¢ measures the maxi-
mum magnitude of perturbations added to images, which is
commonly restricted to be smaller than 8/255 to ensure that
the attacked images could evade human recognition. Notably,
the principle of adversarial training is to execute a min-max
training manner to find the worst-case perturbation at the inner
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training cycle. Based on PGD, the worst-case perturbation is
always iteratively optimized with a subtle increment. Hence,
an overly small € may constrain the searching process from
the requirement of the adversarial training algorithm, which
prevents the model from exploring robust features from im-
ages, potentially compromising the retrieval performance of
the models.

H. Discussion and Analysis

In terms of computational complexity, it is worth noting that
the computational demands of adversarial training are typically
several times higher than those of standard training methods.
This increased complexity primarily stems from the inner max-
imization process used to identify the worst-case perturbation,
which necessitates iterative updates to the perturbation based
on the gradient of the loss function computed on the training
samples. The balance between the robustness and efficiency of
DL models has become a contentious issue in contemporary
Al research. While achieving robustness demands increased
computational resources, it also brings forth valuable attributes
for Al models. For example, adversarial training has been
demonstrated to enhance the reliability and cross-scenario
generalization capabilities of Al models in various real-world
applications [9]].

Fortunately, implementing adversarial training for retrieval
tasks is less computationally intensive than typical super-
vised computer vision tasks. Given that matrix multiplication
processes demand substantial computational resources, it is
feasible to learn hash codes from training samples and then
extend this to the entire database. In contrast to classification
tasks, the training set required for achieving convergence in
retrieval tasks is considerably smaller. We further sampled
different training sizes to investigate the convergence perfor-
mance of DSARH. We implemented a reference experiment
without the adversarial training item and shared the same
initialization and base structure with DSARH. Fig. 7 shows
the mAP performance under varied training sizes. It can be
observed that while adversarial training always requires a
larger training set to achieve promising retrieval performance,
it can converge to a better outcome on a larger training set.
Similarly, on typical computer vision tasks, robust training
approaches were also demonstrated to require higher training
data volume for convergence [67]. Moreover, different from
adversarial training approaches designed for classification or
recognition tasks in the computer vision field, we also verified
that DSARH can acquire robustness without sacrificing regular
performance on cross-modal retrieval issues. It can enhance
the semantic exploration capacity of retrieval models on large-
scale datasets, resulting in better generalization and robustness
on the out-of-sample set.

Moreover, we also examined the retrieval performance
under varied iteration steps, n = 1,3,10, where ¢ and the
step size at each iteration are set as 8/255 and 2/255. TABLE
VII displays the model’s regular and robust performance on
FLICKR25K, and we also computed the training time of
each circumstance. It can be seen that both the regular and
robustness performance are consistently improved with the
increase in iteration steps. Notably, PGD-1 based adversarial



oNOYTULT D WN =

*****For Peer Review Only*****

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

MIRFLICKR25K(I—T7) MIRFLICKR25K(T—1)

NUS-WIDE(T—1) MS-COCO(I-7)

08

07 NUS-WIDE(I—>7)

08 MS-COCO(T—)

g e [0 o o
= ’é’/!i‘ Q\MQH 128bity A o P 35 Lisymls Ay 128bits] 5% N e 128bits
F-& N o 2 o F o & o k% o
07 e <07 i <06 1 207 . ek 207 R
N | e L NG E £ E N 4
0. 0. 05 0. 0. 0.
0.0 0.2 0.4 N 0.6 08 10 0.0 0.2 0.4 R 0.6 08 10 0.0 0.2 0.4 N 0.6 0.8 10 0.0 0.2 0.4 N 0.6 0.8 10 0.0 0.2 0.4 N 0.6 0.8 1.0 0.0 0.2 0.4 N 0.6 0.8 10
Fig. 6: mAP performance with Varied A
08 NUS-WIDE(/—T) 08 NUS-WIDE(T—1) more reliable correlation between multi-modal data. Extensive
_0--1 . . . .
o 001 aos o experiments across various cross-modal and image retrieval
o 0. o - L o 0. o . 1s
< o7 < o tasks have validated DSARH’s capability to enhance robust-
o _ e . . I
Bl W 041 e @ ness. The robust features acquired by DSARH effectively miti-
500 1k 3k sk sk 10k 1ok ek 18k 500 1k 3k Sk sk 1ok 12k 1k 1 gate the heterogeneity issue between disparate data modalities,

training set size training set size
Fig. 7: mAP Performance with Varied Training Size

TABLE VII: The Regular and Robust Retrieval Performance
with Varied Iteration Steps
Image — Text

Text — Image

iteration steps

Regular  Robust Regular  Robust
1 0.7423  0.5502 0.7896  0.5325
3 0.7253  0.5952 0.7685  0.5626
10 0.7108  0.6153 0.7425  0.5812

training, which only executes a FGSM step during the training
process, can also boost the model’s retrieval performance.
PGD-1 attack only requires one gradient computation using
the matrix multiplication of hashing codes on training sam-
ples, thus it will not introduce additional computational cost
from matrix multiplication, which accounts for the primary
computational resource consumption. Therefore, PGD-1 based
adversarial training can be an effective and efficient approach
for enhancing the generalization and robustness of cross-modal
retrieval models. The results presented above emphasize the
significance and practicality of robustness in deep hashing
models for retrieval tasks.

V. CONCLUSION

In this paper, we have introduced a framework called Deep
Supervised Adversarial Robust Hashing (DSARH) for robust
cross-modal and image retrieval. DSARH incorporates adver-
sarial training techniques into the architecture of deep hashing,
aiming to derive robust features from high-dimensional data
modalities. By resisting well-designed attacks applied to im-
ages, DSARH is anticipated to learn more reliable features to
that encapsulate the semantic and conceptual details of high-
dimensional samples, rather than merely focusing on highly
predictive features. Specifically, DSARH leverages the gradi-
ents of learned hash codes from samples to generate effective
perturbations, which are combined with the similarity matrix
and quantified similarity between the model’s predictions of
samples. Thus, utilizing gradient information, DSARH can
facilitate end-to-end adversarial training on retrieval tasks.
Additionally, we provide two distinct training schemes tailored
for cross-modal and image retrieval tasks, respectively. As a
result, DSARH can uncover more robust features to establish a

improving both the regular and robust retrieval performance
of deep hashing models in cross-modal retrieval tasks. This
underscores the significance of adversarial training in the
realm of cross-modal retrieval. In future endeavors, we aim
to explore other forms of adversarial training for additional
data modalities, such as videos and audio, to broaden the
applicability of deep hashing models in multi-modal retrieval
tasks. Additionally, our research will strive to further refine
the trade-off performance in image retrieval tasks.

REFERENCES

[1] T. Baltrusaitis, C. Ahuja, and L.-P. Morency, “Multimodal machine
learning: A survey and taxonomy,” IEEE transactions on pattern anal-
ysis and machine intelligence, vol. 41, no. 2, pp. 423—443, 2018.

[2] Z. Lin, G. Ding, M. Hu, and J. Wang, “Semantics-preserving hashing
for cross-view retrieval,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3864-3872.

[3] S. Kumar and R. Udupa, “Learning hash functions for cross-view
similarity search,” in Twenty-second international joint conference on
artificial intelligence, 2011.

[4] J. Tang, K. Wang, and L. Shao, “Supervised matrix factorization hashing
for cross-modal retrieval,” IEEE Transactions on Image Processing,
vol. 25, no. 7, pp. 3157-3166, 2016.

[5] N. Aloysius and M. Geetha, “A review on deep convolutional neural
networks,” in 2017 international conference on communication and
signal processing (ICCSP). 1EEE, 2017, pp. 0588-0592.

[6] Q.-Y. Jiang and W.-J. Li, “Deep cross-modal hashing,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), July 2017, pp. 3232-3240.

[71 L. Zhu, C. Zheng, W. Guan, J. Li, Y. Yang, and H. T. Shen, “Multi-modal
hashing for efficient multimedia retrieval: A survey,” IEEE Transactions
on Knowledge and Data Engineering, vol. 36, pp. 239-260, 2023.

[8] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus, “Intriguing properties of neural networks,” in
2nd International Conference on Learning Representations, ICLR 2014,
2014.

[9]1 X. Zhang, X. Zheng, and W. Mao, “Adversarial perturbation defense
on deep neural networks,” ACM Computing Surveys, vol. 54, no. 8, pp.
1-36, 2021.

[10] C. Zhang, P. Benz, T. Imtiaz, and I. S. Kweon, “Understanding adver-
sarial examples from the mutual influence of images and perturbations,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 14 521-14 530.

[11] Z. Zheng, L. Zheng, Y. Yang, and F. Wu, “U-turn: Crafting adversar-
ial queries with opposite-direction features,” International Journal of
Computer Vision, vol. 131, no. 4, pp. 835-854, 2023.

[12] L. Zhu, T. Wang, J. Li, Z. Zhang, J. Shen, and X. Wang, “Efficient
query-based black-box attack against cross-modal hashing retrieval,”
ACM Transactions on Information Systems, vol. 41, no. 3, pp. 1-25,
2023.

[13] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” in International
Conference on Learning Representations, 2018.

Page 16 of 23



Page 17 of 23
JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

oNOYTULT D WN =

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

*****For Peer Review Only*****

X. Liu, Z. Hu, H. Ling, and Y.-m. Cheung, “Mtfh: A matrix tri-
factorization hashing framework for efficient cross-modal retrieval,”
IEEE transactions on pattern analysis and machine intelligence, vol. 43,
no. 3, pp. 964-981, 2021.

J. Wang, T. Zhang, j. song, N. Sebe, and H. T. Shen, “A survey on
learning to hash,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 40, no. 4, pp. 769-790, 2018.

D. Zhang and W.-J. Li, “Large-scale supervised multimodal hashing
with semantic correlation maximization,” in Proceedings of the AAAI
conference on artificial intelligence, vol. 28, no. 1, 2014.

S. Su, Z. Zhong, and C. Zhang, “Deep joint-semantics reconstructing
hashing for large-scale unsupervised cross-modal retrieval,” in Proceed-
ings of the IEEE/CVF international conference on computer vision,
2019, pp. 3027-3035.

D. Yang, D. Wu, W. Zhang, H. Zhang, B. Li, and W. Wang, “Deep
semantic-alignment hashing for unsupervised cross-modal retrieval,”
in Proceedings of the 2020 international conference on multimedia
retrieval, 2020, pp. 44-52.

P. Hu, H. Zhu, J. Lin, D. Peng, Y.-P. Zhao, and X. Peng, “Unsupervised
contrastive cross-modal hashing,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 45, no. 3, pp. 3877-3889, 2023.

H. Liu, R. Wang, S. Shan, and X. Chen, “Deep supervised hashing for
fast image retrieval,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 2064-2072.

Q. Li, Z. Sun, R. He, and T. Tan, “Deep supervised discrete hashing,”
Advances in neural information processing systems, vol. 30, 2017.
Q.-Y. Jiang and W.-J. Li, “Asymmetric deep supervised hashing,” in
Proceedings of the AAAI conference on artificial intelligence, vol. 32,
no. 1, 2018.

H. Cui, L. Zhu, J. Li, Y. Yang, and L. Nie, “Scalable deep hashing
for large-scale social image retrieval,” IEEE Transactions on image
processing, vol. 29, pp. 1271-1284, 2019.

X.-S. Wei, Y. Shen, X. Sun, P. Wang, and Y. Peng, “Attribute-aware
deep hashing with self-consistency for large-scale fine-grained image
retrieval,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 45, no. 11, pp. 13904-13920, 2023.

L. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” International Conference on Learning Represen-
tations, 2014.

A. J. DeGrave, J. D. Janizek, and S.-1. Lee, “Ai for radiographic covid-
19 detection selects shortcuts over signal,” Nature Machine Intelligence,
vol. 3, no. 7, pp. 610-619, 2021.

E. Yang, T. Liu, C. Deng, and D. Tao, “Adversarial examples for
hamming space search,” IEEE transactions on cybernetics, vol. 50, no. 4,
pp. 1473-1484, 2018.

C. Li, S. Gao, C. Deng, W. Liu, and H. Huang, “Adversarial attack on
deep cross-modal hamming retrieval,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 2218-2227.
C. Li, S. Gao, C. Deng, D. Xie, and W. Liu, “Cross-modal learning
with adversarial samples,” Advances in neural information processing
systems, vol. 32, 2019.

X. Zhang, X. Zheng, B. Liu, X. Wang, W. Mao, D. D. Zeng, and F.-Y.
Wang, “Towards human—machine recognition alignment: An adversarilly
robust multimodal retrieval hashing framework,” IEEE Transactions on
Computational Social Systems, vol. 10, no. 5, pp. 2847-2859, 2023.
T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollar, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in Computer Vision—ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13.
Springer, 2014, pp. 740-755.

M. Zhou, L. Wang, Z. Niu, Q. Zhang, N. Zheng, and G. Hua, “Adversar-
ial attack and defense in deep ranking,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2024.

Z. Zhang, Y. Chen, and V. Saligrama, “Efficient training of very deep
neural networks for supervised hashing,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2016.

J. Costa Pereira, E. Coviello, G. Doyle, N. Rasiwasia, G. R. Lanckriet,
R. Levy, and N. Vasconcelos, “On the role of correlation and abstraction
in cross-modal multimedia retrieval,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 36, no. 3, pp. 521-535, 2014.
D. Wu, Q. Dai, J. Liu, B. Li, and W. Wang, “Deep incremental hashing
network for efficient image retrieval,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2019, pp. 9069—
9077.

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

F. Shen, C. Shen, W. Liu, and H. Tao Shen, “Supervised discrete
hashing,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2015, pp. 37-45.

M. J. Huiskes and M. S. Lew, “The mir flickr retrieval evaluation,” in
Proceedings of the 1st ACM international conference on Multimedia
information retrieval, 2008, pp. 39-43.

T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng, “Nus-wide:
a real-world web image database from national university of singapore,”
in Proceedings of the ACM international conference on image and video
retrieval, 2009, pp. 1-9.

Y. Cao, M. Long, J. Wang, and S. Liu, “Collective deep quantization for
efficient cross-modal retrieval,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 31, no. 1, 2017.

V. E. Liong, J. Lu, L.-Y. Duan, and Y.-P. Tan, “Deep variational and
structural hashing,” IEEE transactions on pattern analysis and machine
intelligence, vol. 42, no. 3, pp. 580-595, 2018.

A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments for
generating image descriptions,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2015, pp. 3128-3137.

A. Neculai, Y. Chen, and Z. Akata, “Probabilistic compositional embed-
dings for multimodal image retrieval,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp.
4547-4557.

J. Zhou, G. Ding, and Y. Guo, “Latent semantic sparse hashing for cross-
modal similarity search,” in Proceedings of the 37th international ACM
SIGIR conference on Research & development in information retrieval,
2014, pp. 415-424.

D. Wang, X. Gao, X. Wang, and L. He, “Semantic topic multimodal
hashing for cross-media retrieval,” in Twenty-fourth international joint
conference on artificial intelligence, 2015.

H. T. Shen, L. Liu, Y. Yang, X. Xu, Z. Huang, F. Shen, and R. Hong,
“Exploiting subspace relation in semantic labels for cross-modal hash-
ing,” IEEE Transactions on Knowledge and Data Engineering, vol. 33,
no. 10, pp. 3351-3365, 2021.

Q.-Y. Jiang and W.-J. Li, “Discrete latent factor model for cross-modal
hashing,” IEEE Transactions on Image Processing, vol. 28, no. 7, pp.
3490-3501, 2019.

X. Liu, Z. Hu, H. Ling, and Y.-M. Cheung, “Mtfh: A matrix tri-
factorization hashing framework for efficient cross-modal retrieval,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 43, no. 3, pp. 964-981, 2021.

S. Cheng, L. Wang, and A. Du, “Deep semantic-preserving reconstruc-
tion hashing for unsupervised cross-modal retrieval,” Entropy, vol. 22,
no. 11, p. 1266, 2020.

H. Hu, L. Xie, R. Hong, and Q. Tian, “Creating something from
nothing: Unsupervised knowledge distillation for cross-modal hashing,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2020, pp. 3123-3132.

X. Li, D. Hu, and F. Nie, “Deep binary reconstruction for cross-modal
hashing,” in Proceedings of the 25th ACM International Conference on
Multimedia, ser. MM 17, 2017, p. 1398-1406.

J. Zhang, Y. Peng, and M. Yuan, “Unsupervised generative adversarial
cross-modal hashing,” in Proceedings of the AAAI conference on artifi-
cial intelligence, vol. 32, no. 1, 2018.

W. Gu, X. Gu, J. Gu, B. Li, Z. Xiong, and W. Wang, “Adversary guided
asymmetric hashing for cross-modal retrieval,” in Proceedings of the
2019 on international conference on multimedia retrieval, 2019, pp.
159-167.

C. Li, C. Deng, N. Li, W. Liu, X. Gao, and D. Tao, “Self-supervised
adversarial hashing networks for cross-modal retrieval,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 4242-4251.

C. Bai, C. Zeng, Q. Ma, J. Zhang, and S. Chen, “Deep adversarial
discrete hashing for cross-modal retrieval,” in Proceedings of the 2020
international conference on multimedia retrieval, 2020, pp. 525-531.
J. Yu, H. Zhou, Y. Zhan, and D. Tao, “Deep graph-neighbor coherence
preserving network for unsupervised cross-modal hashing,” in Proceed-
ings of the AAAI conference on artificial intelligence, vol. 35, no. 5,
2021, pp. 4626-4634.

Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, “Iterative quantiza-
tion: A procrustean approach to learning binary codes for large-scale
image retrieval,” IEEE transactions on pattern analysis and machine
intelligence, vol. 35, no. 12, pp. 2916-2929, 2012.

P. Zhang, W. Zhang, W.-J. Li, and M. Guo, “Supervised hashing with
latent factor models,” in Proceedings of the 37th international ACM
SIGIR conference on Research & development in information retrieval,
2014, pp. 173-182.



oNOYTULT D WN =

*****For Peer Review Only*****

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

[58] G. Lin, C. Shen, Q. Shi, A. Van den Hengel, and D. Suter, “Fast
supervised hashing with decision trees for high-dimensional data,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 1963-1970.

[59] X. Shi, F. Xing, K. Xu, M. Sapkota, and L. Yang, “Asymmetric discrete
graph hashing,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 31, no. 1, 2017.

[60] W.-J. Li, S. Wang, and W.-C. Kang, “Feature learning based deep
supervised hashing with pairwise labels,” in Proceedings of the Twenty-
Fifth International Joint Conference on Artificial Intelligence, 2016, pp.
1711-1717.

[61] L. Yuan, T. Wang, X. Zhang, F. E. Tay, Z. Jie, W. Liu, and J. Feng,
“Central similarity quantization for efficient image and video retrieval,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020.

[62] W. Zhao, C. Xu, Z. Guan, X. Wu, W. Zhao, Q. Miao, X. He, and
Q. Wang, “Telecomnet: Tag-based weakly-supervised modally coopera-
tive hashing network for image retrieval,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 44, no. 11, pp. 7940-7954, 2022.

[63] H. Cui, L. Zhu, J. Li, Y. Yang, and L. Nie, “Scalable deep hashing
for large-scale social image retrieval,” IEEE Transactions on Image
Processing, vol. 29, pp. 1271-1284, 2020.

[64] Z. Li, J. Tang, L. Zhang, and J. Yang, “Weakly-supervised semantic
guided hashing for social image retrieval,” International Journal of
Computer Vision, vol. 128, pp. 2265-2278, 2020.

[65] Y. Li and J. van Gemert, “Deep unsupervised image hashing by
maximizing bit entropy,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 35, no. 3, 2021, pp. 2002-2010.

[66] H. Hu, L. Xie, R. Hong, and Q. Tian, “Creating something from
nothing: Unsupervised knowledge distillation for cross-modal hashing,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020.

[67] G. R. Machado, E. Silva, and R. R. Goldschmidt, “Adversarial machine
learning in image classification: A survey toward the defender’s per-
spective,” ACM Computing Surveys, vol. 55, no. 1, pp. 1-38, 2021.

[68] J. Bai, B. Chen, Y. Li, D. Wu, W. Guo, S.-t. Xia, and E.-h. Yang,
“Targeted attack for deep hashing based retrieval,” in Computer Vision—
ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28,
2020, Proceedings, Part I 16. Springer, 2020, pp. 618-634.

[69] C. Li, H. Tang, C. Deng, L. Zhan, and W. Liu, “Vulnerability vs.
reliability: Disentangled adversarial examples for cross-modal learning,”
in Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2020, pp. 421-429.

[70] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Un-
derstanding deep learning (still) requires rethinking generalization,”
Communications of the ACM, vol. 64, no. 3, pp. 107-115, 2021.

[71] G. Ding, Y. Guo, J. Zhou, and Y. Gao, “Large-scale cross-modality
search via collective matrix factorization hashing,” IEEE Transactions
on Image Processing, vol. 25, no. 11, pp. 5427-5440, 2016.

[72] D. Mandal, K. N. Chaudhury, and S. Biswas, “Generalized semantic
preserving hashing for n-label cross-modal retrieval,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), July 2017.

Xingwei Zhang is currently a Associate Professor
at the Institute of Automation, Chinese Academy
of Sciences. He received Ph.D. degree from the
School of Atrtificial Intelligence, University of Chi-
nese Academy of Sciences, in 2022, M.S. degree in
Electronic and information engineering from Uni-
versity of Chinese Academy of Sciences in 2018,
and B.S. degree in electronic science and technology
from the Department of Information and Electronic
Engineering, Zhejiang University, Hangzhou, China,
in 2014. His research interest includes multi-modal
retrieval, adversarial robustness and social network security.

18

Gang Zhou received the M.S. degree in artificial in-
telligence from the School of Artificial Intelligence,
Chinese Academy of Sciences, Beijing, China, in
2023.He is currently working toward the PhD degree
with the School of Artificial Intelligence, Beijing
University of Posts and Telecommunications. His
research interests include deep cross-modal hashing,
adversarial machine learning theory.

Xiaolong Zheng (M’10) is currently a Professor at
the Institute of Automation, Chinese Academy of
Sciences. He received Ph.D. degree from the Insti-
tute of Automation, Chinese Academy of Sciences,
in 2009, M.S. degree from Beijing Jiaotong Univer-
sity in 2006, and B.S. degree from China Jiliang
University in 2003. His research interests includ-
ing social computing, big data analytics, knowledge
graphs, financial technologies and complex system
intelligence.

Wenji Mao received the B.S. degree in computer
science from Jilin University, Changchun, China, in
1990, the M.S. degree in computer software and arti-
ficial intelligence from the Institute of Mathematics,
Chinese Academy of Sciences, Beijing, China, in
1993, and the Ph.D. degree in computer science from
the University of Southern California, Los Angeles,
USA, in 2006. She is currently a Professor with the
Institute of Automation, Chinese Academy of Sci-
ences, and a chief professor with the School of Ar-
tificial Intelligence, University of Chinese Academy
of Sciences. Her research interests include artificial intelligence, cross-modal
retrieval and data mining.

Liang Wang (Fellow, IEEE) received the BEng
and MEng degrees from Anhui University, in 1997
and 2000, respectively, and the PhD degree from
the Institute of Automation, Chinese Academy of
Sciences (CASIA), in 2004. From 2004 to 2010,
he was a research assistant with Imperial College
London, U.K., and Monash University, Australia, a
research fellow with the University of Melbourne,
Australia, and a lecturer with the University of Bath,
U.K., respectively. Currently, he is a full professor of
the Hundred Talents Program with the National Lab
of Pattern Recognition, CASIA. His major research interests include machine
learning, pattern recognition, and computer vision. He has widely published
in highly ranked international journals, such as the IEEE Transactions on
Pattern Analysis and Machine Intelligence and IEEE Transactions on Image
Processing, and leading international conferences, such as CVPR, ICCV,
and ECCV. He has served as an associate editor of the IEEE Transactions
on Pattern Analysis and Machine Intelligence, IEEE Transactions on Image
Processing, and Pattern Recognition. He is an IAPR fellow.

Daniel Dajun Zeng (F’15) received the B.S. degree
in economics and operations research from the Uni-
versity of Science and Technology of China, Hefei,
China, in 1990 and the M.S. and Ph.D. degrees
in industrial administration from Carnegie Mellon
University in 1998. He current is a Research Fellow
position at the Institute of Automation, Chinese
Academy of Sciences. His research interests include
intelligence and security informatics, infectious dis-
ease informatics, social computing, recommender
systems, software agents, and applied operations
research and game theory. He has published more than 300 peer-reviewed
articles. He currently serves as the editor in chief of ACM Transactions on
MIS.

Page 18 of 23



Page 19 of 23 ¥****¥Eor Peer Review Only*****

1
2
3
4
> Suppl tary Materials: Deep S ised Ad 1al
6 upplemen ary aterials: €eep oupervise versarila
7 Robust Hashing for Retrieval
8
9 o . ; . . o
10 Xingwei Zhang Gang Zhou Xiaolong Zheng Wenji Mao
11 Liang Wang Daniel Dajun Zeng
12
13 In this file, we provide the supplementary experimental results and network configution
14 details for the main file, including the comparison of DSARH with the state-of-the-art
15 shallow methods, the nDCG value of cross-modal retrieval under attacked circumstance,
16 and the comparison with other benchmark baselines under varied attack types.
17
18 1 Experimental Result
19 Xperimenta esults
20
21 Table I: Comparison with the State-of-the-Art Shallow Hashing Methods
22
23 Task Mothods WIKI MIRFLICKR25k NUS-WIDE
24 16 32 64 128 16 32 64 128 16 32 64 128
25 SePH [1] 0.2687  0.2918  0.3051 0.3086 0.673 0.6743  0.6799  0.6828  0.5303  0.5381 0.5415  0.5437
CVH [2] 0.1257  0.1212  0.1215 0.1171  0.6067  0.6177  0.6157 0.6074 0.3687 0.4182  0.4602  0.4466
26 LSSH [3] 0.2141  0.2216  0.2218 0.2211  0.5784  0.5804  0.5797  0.5816 0.39 0.3924  0.3962  0.3966
CMFH [4] 0.2416  0.2214  0.2302  0.2337  0.5452  0.5509  0.5506 0.551 0.3523  0.3587  0.3596  0.3579
27 GSePHrand [5]  0.2835  0.2916  0.3033  0.3114  0.6454  0.6607 0.6726  0.6816  0.5185  0.5395  0.5457  0.5516
28 SCM [6] 0.1725  0.1564  0.1523  0.1531 0.628 0.6345  0.6385 0.649 0.5106  0.5361  0.5439  0.5507
I-T STMH [7] 0.1941  0.2476  0.2504  0.2519  0.5823  0.6183  0.6372  0.5621  0.4364  0.5529  0.5907  0.6128
29 SRLCH (8] 0.3318 0.3526 0.3269 0.3622  0.7102  0.7128  0.7201 0.7159  0.6158  0.6411 0.6421 0.6555
DLFH [9] 0.2916  0.2988  0.3217  0.3525  0.6775  0.6987 0.7102  0.7255  0.6111 0.6444  0.6521 0.6497
30 MTFH [10] 0.3211 0.3526  0.3429 0.3625 0.5044 0.5151 0.5581 0.5741 0.3121 0.3254 0.3124 0.365
31 DSARH(ours) 0.2742 0.2856 0.2933 0.3021 0.7321 0.7598 0.7266 0.7289 0.6385 0.6476 0.6528 0.6571
32 SePH [1] 0.6349 0.642 0.6649  0.6707  0.7179 0.722 0.7307  0.7344  0.6203  0.6354  0.6372  0.6445
CVH (2) 0.1185  0.1034  0.1024 0.099 0.6026  0.6041 0.6017  0.5972  0.3646  0.4024  0.4339  0.4225
33 LSSH [3] 0.5031 0.5224  0.5293  0.5346  0.5898  0.5927  0.5932  0.5932  0.4286  0.4248  0.4248  0.4175
CMFH [4] 0.612 0.5446  0.5599  0.5652  0.5433  0.5573  0.5575  0.5576  0.3524  0.3564  0.3573  0.3562
34 GSePH [5] 0.6458  0.6631  0.6723  0.6748  0.6965 0.7174 0.7304  0.7446  0.6128  0.6429  0.6572 0.659
SCM [6] 0.1579  0.1421 0.1323  0.1268  0.6176  0.6234  0.6285  0.6369  0.4863 0.505 0.5138  0.5182
35 T—I STMH (7] 0.5828 0.6114  0.6251 0.636 0.715 0.7414  0.7533 0.762 0.6737 0.706 0.7228  0.7284
36 SRLCH (8] 0.7214 0.7111 0.7028 0.7311 0.7059  0.7255 0.7416  0.7426  0.7011 0.7139  0.7288  0.7327
DLFH [9] 0.6511  0.6632  0.6819 0.6714 0.7658 0.7881 0.7953 0.7999 0.7124 0.7454 0.7765 0.7336
37 MTFH [10] 0.7011 0.7025  0.6964  0.6922  0.5142  0.5563  0.5321 0.5998  0.4112  0.3555  0.4151 0.5214
38 DSARH(ours) 0.6259  0.6325  0.6478  0.6506  0.7061 0.7088 0.7944  0.7138 0.7125 0.7461 0.7296 0.7344
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54 *State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese
55 cademy of Sciences, Beijing, s ina, and also wi e School of Artificial Intelligence, University
Acad fS B 100190, Ch d al th the School of Artificial Intell U t
of Chinese Academy of Sciences, Beijing 100190, China. (Corresponding author: Xiaolong Zheng. E-
56 mail: ziaolong.zheng@ia.ac.cn)
57 tSchool of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876,
58 China.
59



oNOYTULT D WN =

*****For Peer Review Only*****

MIRFLICKR2SK (I=7)1

MIRFLICKR25K (/—7)32bits MIRFLICKR25K (/—T)64bits MIRFLICKR2SK (T—1)16bits MIRFLICKR25K (T—/)32bi MIRFLICKR2SK (T—/)64bits
o

3

s
2

2

NDCG@100
[

NDCG@100
NDCG@100
NDCG@100

regular attacked regular attacked regular attacked regular attacked regular attacked regular attacked

NUS-WIDE (/—+7)16bits NUS-WIDE (/—7)32bi NUS-WIDE (/—T)64bits NUS-WIDE (7—)16bits NUS-WIDE (T—132bits NUS-WIDE (T—164bits

°
°
°
°

NDCG@100

NDCG@100
S

NDCG@100

NDCG@100
3

NDCG@100
g

NDCG@100
3

°

regular attacked regular attacked regular attacked regular attacked regular attacked regular attacked

MS-COCO (1)1 6bits MS-COCO (I=+1)32bits MS-COCO (I—T)64bits MS-COCO (T—1)16bits MS-COCO (T

bits MS-COCO (T—64bits

°

°
b

NDCG@100
e o

NDCG@100

NDCG@100
23

e
g

regular attacked regular attacked regular attacked regular attacked regular attacked regular atiacked

Fig. 1: nDCG Comparison with the State-of-the-Art deep cross-modal Hashing Methods
under Attacked Circumstance

Table II: 12T Comparison with the State-of-the-Art Deep Cross-modal Hashing Methods
under Attacked Circumstance

Attack Mothods NUS-WIDE
16 32 64 128

Original 0.6577 0.6599 0.7361 0.7371

Noise [11] 0.6674 0.6536 0.7152 0.7214

DCMH [12] CMLA [13] 0.4824 0.4985 0.5669 0.5636
DACM [14] 0.4021 0.4058 0.4652 0.4711

AACH [15] 0.5012  0.5123 0.5936 0.5863

Original 0.4994 0.5249 0.6697 0.6725

Noise [11] 0.4856  0.5299 0.6539 0.6696

DJSRH [16] CMLA [13] 0.3612  0.3652 0.4569 0.4685
DACM [14] 0.3017 0.3074 0.4025 0.4111

AACH [15] 0.3856  0.3925 0.5162 0.5225

Original 0.6512  0.6551 0.7492 0.7513

Noise [11] 0.6621 0.6325 0.7263 0.7469

DGCPN [17] CMLA [13] 04869 04952 0.6014 0.6025
DACM [14] 0.3825 0.3947 0.4698 0.4717

AACH [15] 0.5236  0.5265 0.6242 0.6325

Original 0.6588 0.6629 0.7527 0.7566

Noise [11] 06152 0.6523 0.7425 0.7369

UCCH [18] CMLA [13]  0.4625 04635 0.5414 0.5426
DACM [14] 0.3954 0.4011 0.4847 0.4919

AACH [15] 0.4825 0.4858 0.5714  0.5808

Original 0.6612 0.6655 0.7552  0.758

Noise [11] 0.6539 0.6712 0.7514 0.7489

DSARH(Ours) CMLA [13] 0.5525 05625 0.6458 0.6524
DACM [14] 05241 0.5248 0.6014 0.6127
AACH [15] 0.5825 0.5833 0.6758 0.6787

Table I1I: T2I Comparison with the State-of-the-Art Deep Cross-modal Hashing Methods
under Attacked Circumstance

Attack Mothods NUS-WIDE
16 32 64 128

Original 0.6202 0.6343 0.6435 0.6486

Noise [11] 0.6123 0.6369 0.6518 0.6502

DCMH [12] CMLA [13] 04239 04374 04384 0.4394
DACM [14] 0.3884 0.3914 0.4009 0.4089

AACH [15] 0.4512 0.4624 0.4783 0.4795

Original 0.4761 0.4892 0.5354 0.5366

Noise [11] 0.4541 0.4888 0.5236 0.5123

DJSRH [16] CMLA [13] 0.2945 0.2984 0.3314 0.3385
DACM [14] 0.2614 0.2647 0.2988 0.3052

AACH [15] 0.3123  0.3241 0.3647 0.3717

Original 0.6283 0.6391 0.6352 0.6563

Noise [11] 0.6052 0.6123 0.6236 0.6602

DGCPN [17] CMLA [13]  0.4525 0.4625 0.4658 0.4721
DACM [14] 0.3852  0.3914 0.3954 0.4001

AACH [15] 0.5002 0.5111 0.5138 0.5321

Original 0.6813 0.6838 0.6837 0.6856

Noise [11] 0.6636 0.6789 0.6924 0.6632

UCCH [18] CMLA [13] 0.4414 0.4428 0.4528 0.4652
DACM [14] 0.3251  0.3314 0.3354 0.3414

AACH [15] 0.4852  0.4867 0.4914 0.4936

Original 0.6884 0.6891 0.6902  0.699

Noise [11] 0.6636 0.6912 0.6895 0.6958

DSARH(Ours) CMLA [13] 0.5733  0.5785 0.5812  0.5863
DACM [14] 0.5352  0.5367 0.5412  0.5456
AACH [15] 0.6025 0.6052 0.6125 0.6187
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2 Network Configuration

We leverage the feature representation structures from pre-trained deep convolutional
models to extract semantic feature representations for the hash network construction.
Conversely, the text information in multi-modal datasets that has been previously en-
coded with numerical vectors, we employ a fully-connected network directly as the feature
representation structure. Specifically, we adopt the approach outlined in [16] and employ
AlexNet without the final decision-making layer as the image feature extraction frame-
work in our deep cross-modal retrieval model. This feature extraction framework has
been pre-trained using adversarial training on ImageNet and consists of 5 convolutional
layers with 64, 192, 384, 256, and 256 kernels, along with 3 maximum pooling layers and 2
fully-connected layers. Subsequently, the extracted features, with dimensions of 4096, are
further transmitted to the hash code network, which has a length of [4096 — 512 — HLJ.
The hash network comprises a 512-dimensional semantic feature representation layer and
a hash layer, where the hash code length is set as HL, responsible for generating image
hash codes.

For the text hash network in the cross-modal retrieval task, we utilize fully-connected
layers. To ensure better alignment with the semantic meaning of image samples, the
dimensions of the semantic feature layer and hash layer are set to be equal to image hash
network. Based on the dimension of text vectors, we set the length of the text network
as [10 — 4096 — 512 — HLJ, [1386 — 4096 — 512 — HL], [1000 — 4096 — 512 — HL],
[1386 — 4096 — 512 — HL] and [2026 — 4096 — 512 — HL] for Wiki, FLICKR25K,
NUSWIDE and MS-COCO respectively. Furthermore, following the methodology pro-
posed by [19], we employ AlexNet as the feature extraction structure for single image
retrieval tasks on both NUSWIDE and MS-COCO datasets. Subsequently, the features
are fed forward to the semantic features and hash code layer, with the length of the entire
network set as [4096 — 1000 — HL)].

Our project and other benchmark baselines trained for robustness evaluation are im-
plemented using PyTorch. These benchmark baselines are retrained according to the
settings provided by the corresponding authors. We use ReLU as the exclusive nonlinear
activation function for all semantic features, and Tanh is employed to approximate the
sign hash codes. For training the single image retrieval model on both NUSWIDE and
MS-COCO datasets, we perform a total of 50 iterations. At each iteration, we randomly
select 2000 samples from the gallery set for training, which are then divided into batches
with a batch size of 128. The model is trained for 3 epochs at each iteration. We utilize
the Adam optimizer for updating parameters, with an initial learning rate set to le-4. The
learning rate decays along with iterations using the Exponential learning rate method,
with a decay rate set to 0.9. Additionally, a weight decay of le-5 is applied to prevent
over-fitting.

For the cross-modal retrieval task, we utilize the SGD optimizer. And the learning
rates for the image and text hash networks in the cross-modal retrieval model are set
to le-3 and le-2, respectively. We use a momentum of 0.9 and a weight decay of 5e-4.
The batch size for the training data is set to 128. A total of 200 epochs are performed
on FLICKR25K, NUSWIDE and MS-COCO datasets. To achieve better convergence,
we freeze the parameters of the pre-trained AlexNet but only update the fully-connected
layers when training on the Wiki dataset.
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