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Abstract. The growth of online data has increased the need for retriev-
ing semantically relevant information from data in various modalities,
such as images, text, and videos. Thanks to the powerful representation
capabilities of deep neural networks (DNNs), deep cross-modal hamming
retrieval (i.e., DCMHR) models have become popular in cross-modal
retrieval tasks due to their efficiency and low storage cost. However,
the vulnerability of DNN models makes them susceptible to small per-
turbations. Existing attacks on DNN models focus on supervised tasks
like classification and recognition, and are not applicable to DCMHR
models. To fill this gap, in this paper, we present BACH, an adversar-
ial learning-based attack method for DCMHR models. BACH uses a
triplet construction module to learn and generate well-designed adver-
sarial samples in a black-box setting, without prior knowledge of the
target models. During the learning process, we estimate the gradient of
the objective function by using random gradient-free (RGF) method. To
evaluate the effectiveness and efficiency of BACH, we perform thorough
experiments on 3 popular cross-modal retrieval dataset and 13 state-
of-the-art DCMHR models, including 6 image-to-image retrieval models
and 7 image-to-text retrieval models. As a comparison, we select two
established adversarial attack methods: CMLA for white-box attack and
AACH for black-box attack. The results show that BACH offers compa-
rable attack performance to CMLA while requiring no knowledge of the
target models. Furthermore, BACH surpasses AACH on most DCMHR

models in terms of attack success rate with limited queries.

Keywords: Cross-modal Retrieval -+ Hashing - Robustness -
Adversarial perturbation

1 Introduction
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The rapid advancement in storage and encoding techniques has greatly impacted
human life by enabling people to search the internet for what they desire.
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While various search techniques have been developed with the growth of social
media and multi-modal data, they mostly only work with similarity-based search
within a single modality, such as the keyword and tag-based searches, which no
longer suffice in the face of diverse multi-modal data [9,32].

To address this limitation, cross-modal retrieval has been proposed and is
gaining widespread attention [6,9,18,43]. It maps data from different modalities
into a common space with the same dimension, and measures the semantic simi-
larity by comparing samples in this space. However, measuring semantic similar-
ity between data from different modalities is a significant challenge, which is also
known as the heterogeneous gap problem. Conventional cross-modal retrieval
methods assess semantic similarity by measuring the distance between samples
in a common space [18]. Specifically, samples from different modalities with the
same semantics are close in the common space [25]. Representational encoding
in this space can be either real-valued or binary [37]. While real-valued encoding
is often impractical for large dataset, the binary encoding is preferred for large
dataset as it reduces storage costs and speeds up retrieval [14], and is used in
cross-modal hashing to map data semantics into a binary space and measure
semantic similarity using Hamming distance [22].

The quality of semantic feature extraction has a significant impact on the
performance of encoding. To minimize the impact of the heterogeneous gap prob-
lem, an effective feature extraction method is essential [1]. Existing hash-based
cross-modal retrieval methods are based on shallow architectures [13,41], and
rely on features extracted by human experts. To date, with the growth of deep
learning techniques in computer vision [33], natural language processing [36],
and speech analysis [17], deep neural networks (DNNs) have become popular for
improving the performance of cross-modal retrieval. DNNs can effectively detect
semantic similarities between different modalities, and build cross-modal correla-
tions through their superior representational capabilities. Due to their powerful
representational capabilities, DNNs are trained to identify semantic similari-
ties between different modalities and build cross-modal correlations. Research
has shown that DNN-based cross-modal retrieval models outperform traditional
shallow models [7].

However, it has been well established that even a well-trained deep learning
model can be easily misled by inputs with subtle, human-undetectable perturba-
tions, known as the adversarial examples [5,26,34,40]. To date, many effective
adversarial methods have been proposed to attack trained DNN models [23].
These attacks can be categorized as white-box or black-box based on whether
the attacker has access to the target model’s internal information. While these
attack methods are primarily designed for supervised tasks such as classifica-
tion or recognition, little attention has been given to studying the impact of
adversarial samples on deep hamming learning in cross-modal retrieval area.

The cross-modal retrieval task differs significantly from tasks like classifica-
tion and recognition. Firstly, cross-modal retrieval models are trained through
unsupervised or semi-supervised methods without ground-truth labels, making
them more susceptible to misleading information. Secondly, the objective of
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attacks on cross-modal retrieval models is to generate semantically unrelated
samples rather than incorrect classifications. This makes existing adversarial
attacks unsuitable for attacking cross-modal retrieval models. Additionally, there
are two major challenges in performing adversarial attacks on deep cross-modal
hamming retrieval (DCMHR) models in a black-box setting: 1) the attacker does
not have access to information about the target model, including the network
architecture, model parameters, and loss functions, and can only obtain the out-
put of the target model through queries; 2) there are often practical constraints
on queries, such as a maximum number of queries allowed.

To tackle these challenges, we introduce BACH, a black-box adversarial
attacking method for deep cross-Modal hamming retrieval (DCMHR) models.
BACH specifically targets DCMHR models and generates adversarial samples
by maximizing the hamming distance of semantically similar samples, thereby
greatly impairing the performance of DCMHR models. To evaluate the effective-
ness of BACH, we conduct experiments on 13 state-of-the-art DCMHR models
and 3 popular dataset (i.e., MIRFlickr-25K, NUS-WIDE, and CIFAR-10) in
three aspects: 1) attacking DCMHR, models on both image-to-image and image-
to-text retrieval tasks; 2) investigating the impact of the number of samples
in the query dataset used to construct triples on the attack performance; and
3) comparing BACH against the state-of-the-art white-box attack method (i.e.,
CMLA [20]) and the black-box attack method (i.e., AACH [19]).

To summarize, this paper makes the following contributions:

— We propose BACH, a learning-based approach for adversarial attacks on deep
cross-modal hamming retrieval models in a black-box environment. Unlike
existing white-box attack methods, BACH does not require any prior knowl-
edge and thus, is more practical in real-world applications. To the best of
our knowledge, BACH is the first method designed for attacking cross-modal
retrieval models in a black-box setting.

— We select a query-based black-box attacking strategy with performance com-
parable to white-box attack methods. This is achieved through the use of the
random gradient-free (RGF) method and a limited number of target model
queries.

— We evaluate the effectiveness and efficiency of BACH by conducting experi-
ments on 13 state-of-the-art cross-modal retrieval models and 3 benchmark
dataset. The results show that BACH performs comparably to the white-box
attack methods while only requiring a limited number of queries. Our app-
roach can be used to assess the robustness of cross-modal retrieval models.

The rest of the paper is organized as follows. Section 2 briefly introduces
deep cross-modal retrieval task and problem formulation. Section 3 presents the
technical details of our approach BACH. Section 4 shows our experimental setup
as well as the experimental results. Related work is discussed in Sect. 5. Section 6
presents the conclusion and future extensions of this work.



444 J. Zhang et al.

2 Background

2.1 Deep Cross-Modal Retrieval and Problem Formulation

Cross-modal retrieval task refers to using image or text as queries to search
for data with another modal in the database, such as using text to search for
images or using images to search for text. A well-trained DCMHR model can
retrieval semantically relevant data from the database. As shown in Fig. 1(a),
using a picture of a flower as a query, the DCMHR model can retrieve some text
about the flower, and we define that this picture and the retrieval result (i.e.,
text) are semantically relevant. In this paper, we use O = {0V, 0"} = {oi}lc , to
represent a cross-modal database with C samples. Herein, sample o; = {0}, 0!} is
an image-text pair, where 0! and o} represent the image data and textual data,
respectively.

Generally, DCMHR use DNN to extract semantic features F, € RE*Fv,
F, € R€*kt from the original data, where k,, k; is the feature-length. After
using the feature extraction architecture on the dataset, the semantic features
are calculated as:

= fl:)ase (Ov70;))ase) fbaee (Ot Hbase) ) (1)

where 67, .., 0},.. are the parameters that need to be trained for the two feature
extraction architectures. Moreover, k, and k; are generally set to be the same
in order to extract the equipotential features.

Deep cross-modal retrieval model aims to learn two hash functions f} .,
[} s that project image or text samples onto the Hamming space. This process
can be formulated as:

B" = SZgTL (f;L]CLSh (FU’ QZash)) 7Bt = SZgTL (fliash (Ft?Q;zash)) ’ (2)

where BV, Bt € {-1, l}CXd are the binary code, d is the length of the hash
space, FV, F! € [-1 1]CXd are the binary-like representation generated by the
output layer of a target deep cross-modal network, and 6}, and 6, are two
parameters that need to be learned for the hash function.

The semantic similarity between samples from different modalities is evalu-
ated by the Hamming distance of the learned binary codes in a hash space:

3 (K —(X.7)), g
where X and Y are the binary codes of the samples, K is a constant that maintain
the distance magnitude. A well-trained cross-modal hash retrieval model should
preserve semantic similarity structure between samples of different modalities.
Speciﬁcally, image sample o] whose Hamming distance from its positive sam-
ple of , (with the shortest Hamming distance) is less than negative sample of |
Wlth the longebt Hamming distance). Here, we can construct a sample’s triple
{oz , 0 s l } Hash function is encouraged to satisfy the inequality as follows:

(fhaeh( ) fhash( )) < D(fhash( ) fhash( ; )) (4)

has

D(X,Y) =
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Next, we consider generating restricted adversarial perturbations 7 that can
fool the DCMHR models. The attacking goal can be formalized as the following
inequality:

D(f;zjash(og +T] ) fhash( )) > D(fhash(o +77 ) f;iash(oéN)) (5)

The adversarial images of +7" obtained by adding well-designed perturbations 7
can make the retrieval performance of the retrieval model significantly degraded.
For example, as shown in Fig.1(b), given an adversarial flower sample, the
retrieval results are some irrelevant textual items with the original flower target.

l&

cachorro birds sudan
california
egret blrd

Original ! ! ( ‘ Adyersarial
Sample \\ Sample
-
flower flower rose
ros garden beautlful

nature plants brldalplnk lovely

fiour colourful gorgeous animal cadela wading nature

(a) Original sample Query Results  (b) Adversarial Sample Query Results

Fig. 1. Examples of query results for the original and adversarial image samples

3 Black-Box Attack on DCMHR Models

This part details our proposed black-box adversarial attack named BACH
against DCMHR models. Figure2 shows the overall working pipeline, which
mainly consists of three parts. The first part carries out cross-modal query-
ing. The second part constructs a cross-modal triplet for every image based on
the query results, and the third generates the adversarial example of an image
according to the cross-modal triplet. In this paper, we generate adversarial sam-
ples only for images, not text because adding perturbations to text can be easily
detected.

3.1 Black-Box Attack Framework

Firstly7 we input M image-text pairs samples as cross-modal data queries

={0y,0!}, where O} = {ov}Y and Ot — {0/} ) to the target retrieval
model Then, we constructmg a triplet {0Z NN N} for each sample by get the
hamming distance between M samples. Specifically, for an image-text triplet
{o?,0! ,0! 1}, the goal of attacking cross-modal Hamming retrieval model can
be formulated as follows:

Hrlzin D(f;{ash(of =+ 77”)7 fftzash(ogzv))_

(6)
D(f;z)ash(of + Uv)’ f}iash(oép))a s.t. ||,'7v||p < €’.
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(a) Cross-Modal Query (b) Cross-Modal Triplet Construction
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Fig. 2. Overview of BACH

An adversarial image 6y = oY + n¥ should satisfy two constraints: 1) the
hamming distance between adversarial sample and it’s positive sample should
be as large as possible, while with negative sample should be as small as possible;
Cause the generation of adversarial samples is guided by positive and negative
samples to change the pixels of the original image. Specifically, see Fig. 2(c) for
example, we continuously push away the hamming distance between the original
sample and positive sample (1 to 6), and narrow the hamming distance between
the original sample and negative sample (7 to 1), until reaching the preset num-
ber of iterations T'. The value setting of threshold T is detailed in Sect.4.2; 2)
The perturbation 1" in the attack should be human-imperceptible. To this end,
we use ||1°[|, < €” to constrain the magnitude of the perturbation. " refers to
the pixel changes guided by positive and negative samples in this paper. Specif-
ically, let h be the length of perturbation, ||Hp be the [,-norm paradigm, we

define the perturbation as [[n[|, = (/%(Wl P+ |n2|? + - + |nu|?). The dimen-
sion of the perturbation is consistent with the raw image in the image dataset.
Note that, the IS, bound is the most common way to limit the magnitude of
an image, as it strictly limits the maximum image pixel from being perceived.
Therefore, we choose the [ -norm attack in this paper.
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However, the optimization problem of Eq. (6) is an NP-hard problem, inspired
by the C&W [4] attack, we rewrite the objective loss function as:

: vt t v
min I'(0}, 0;,,, 05, €)

M
=min Y max(D(B}, Bl,) - D(B},B},) + £,0),s.t.|[n"[ o, < ¢€",
1=0

Bzv = f;:ash (OZJ + UU) )
B;;N = f}tLaSh (051\]) ’ (8)
pr = fff;,ash (ng) )
and k > 0 is a tuning parameter for attack transferability.

In the white-box setting, the optimization problem of Eq. (7) can be solved
by back-propagating the loss function gradient. In the black-box setting, how-
ever, we cannot get the network information of target model and only get the
model output (i.e., Bf,* € {v,t} in Eq.(8)). Gradient-based estimation is the
most effective method in black-box attacks. Inspired by [29], we use the ran-
dom gradient-free (RGF) method to estimate the gradient of the loss function
in Eq. (7), and Ilyas et al. [11] have proved this method is optimal to estimate
the gradient. Specifically, the gradient (ﬁ (defined as g;) of an image sample o

can be estimated by the following equation:

q
Zgi’ with g; = L@t oY) —f@y) 9)

g

where {ui}gzl are the random vectors sampled independently from a uniform
distribution P on R, g is the number of the random direction, o is the sampling
variance and D is the dimension of original image. We set ¢ = 0.01, and ¢ = 50
in this paper. However, it is a box-constraint problem for Eq. (7) that cannot be
solved directly based on the commonly-used optimizers. Therefore, we used the
following treatment to perturbation €’ to solve this problem:

€’ = %(tanh(e”) +1)—o0". (10)

Then, we choose the Adam [16] optimizer to solve Eq. (7). Finally, we learn the
following adversarial perturbations for cross-modal retrieval:

vt t 61})

v .
n" = argmin I'(0f, 0;,,,0;

v

(11)

Now that we have detailed the attack method’s whole process, specifically,
we attack the target retrieval model by inputting the adversarial sample. The
entire process of adversarial sample generation is shown in Algorithm 1. Line 1 to
Line 4 of the algorithm is the querying part. Line 5 to Line 6 describe the triplet
construction. Line 7 to Line 11 illustrate the adversarial sample generation,
where Line 9 corresponds to the gradient estimation.
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Algorithm 1: Black-box Adversarial Perturbation Generation Method for
Deep Cross-modal Hash Retrieval Models (BACH)

Input : Target deep cross-modal retrieval model: fr,.; (07), * € {v,t}, data

c . . . .
0= {of, 02}1‘—17 iteration 7', adversarial queries M

Output: A adversarial sample of query image: 6; = oj +n°

=

initialize iter = 0;
M

Random select query data {ol-’, ot i1’

Compute B' = sign (f,tmsh (Oé));
Compute B” = sign (frasn (03));
Compute Hamming distance matrix according to Equation (3) based on
v v M
{B",B'} = {B! Bi} _;
Create cross-modal triplets {0;-’, 0§P , oﬁN} for every image o;;
7 Select n*:while iter < T do

v 3 vt t VY.
n 7a’rgmln[‘(oiaoip7oiN7€ )7
ev

[

=

9 Estimate §; using Equation (9);
10 Using Adam optimizer;
11 iter = iter + 1;

12 return o;;

4 Experiment

This section evaluates the performance of BACH on several commonly-used deep
cross-modal hamming retrieval models and dataset. We assess the attack on
image-to-text retrieval task and image-to-image retrieval task.

4.1 Dataset

The dataset of image-to-text retrieval task include MIRFlickr-25K and NUS-
WIDE. The dataset of image-to-image retrieval task include CIFAR10 and NUS-
WIDE. We use these three dataset to train several deep cross-modal hamming
retrieval models. In all of our attack experiments below, dataset are divided into
three-part, including train, query, and gallery parts. Note that the attacks does
not use the train set.

MIRFlickr-25K contains 25,000 images from the Flickr website, each image
with a corresponding text description constituting an image-text pair. Accord-
ing to [42], we randomly divided the dataset into a training dataset with 5000
samples and a test dataset with 20000 samples. There are M samples as query
dataset in the test dataset, while remaining samples as a gallery set.

NUS-WIDE is a multi-label dataset containing 81 labels. There are 269,648
image-text pairs. We select a total of 195834 samples from the most commonly
used 21 labels as the image retrieval dataset according to [12]. We select 500
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Table 1. The attack performance in term of mAP on the state-of-the-art DCMHR
models for image-to-text retrieval task, based on MIRFlickr-25K and NUS-WIDE sets

Dataset MIRFLICKR-25k NUS-WIDE
CL 16 32 64 128 16 32 64 128
Method |REG|ATK REG ATK REG ATK REG|ATK REG ATK | REG|ATK REG|ATK REG ATK
DJSRH | 0.66 | 0.60  0.66 | 0.61 | 0.67 0.61  0.68  0.62 0.46 0.41 | 0.49 043 045 | 041 | 0.53  0.44
AGAH | 0.74 059  0.77 | 0.60 | 0.78 0.62 | 0.77 | 0.63  0.62 0.43 | 0.64 0.45  0.65 | 0.46 | 0.65  0.46
SSAH 0.64 | 0.60  0.68 | 0.61 | 0.69 | 0.61  0.71 | 0.61 | 0.48  0.41 | 0.51 | 0.41 0.53 | 0.41 | 0.53 | 0.42
DCMH | 0.71 | 0.62 0.74 | 0.62 | 0.72 0.63  0.73 | 0.64 0.64 0.43 | 0.66 0.44  0.65 | 0.46 | 0.67  0.46
DSAH | 0.69 | 0.60 0.70 | 0.60 | 0.71 0.61 | 0.71 | 0.61 0.56 0.42 | 0.60  0.42  0.61 | 0.43 | 0.62  0.44
* REG is the abbreviation of regular that used to represent regular retrieval perfor-
mance, and ATK is the abbreviation of attack that used to represent attack perfor-
mance.
¥ CL refers to code length. Here, M is set to 500 and T is set to 800.

pairs for each label to construct the training dataset randomly, with 100 pairs
of each label randomly selected to query, and the rest are used as the gallery
dataset. In addition, this paper uses NUS-WIDE as a dataset for attacking the
deep cross-modal hamming retrieval models for image-to-image retrieval task.
Following [8], a total of 5000 samples are selected randomly as the query dataset
and the remaining samples as a gallery set.

CIFARI10 dataset consists of 60,000 images whose sizes are 32 x 32 and belong
to 10 categories. Each category has 6,000 images. There are 50,000 training
images and 10,000 testing images. We extract 100 samples for each category from
the testing dataset for querying, and the remaining samples are as a gallery set.

To evaluate BACH, we use two commonly used evaluation criteria for cross-
modal retrieval tasks in the field of information retrieval, namely, mean Average
Precision (mAP) and Normalized Discounted Cumulative Gain (NDCG).

Table 2. The attack performance in term of NDCG on the state-of-the-art DCMHR
models for image-to-text retrieval task, based on MIRFlickr-25K and NUS-WIDE sets

Dataset MIRFLICKR-25k NUS-WIDE

CL 16 32 64 128 16 32 64 128
Method | REG | ATK | REG | ATK | REG | ATK REG | ATK | REG | ATK REG|ATK | REG|ATK REG ATK
DJSRH | 0.63 | 0.59 | 0.66 | 0.60 | 0.66 0.61 0.68 | 0.62 | 0.48 | 0.41 0.49 | 0.42 | 0.53 | 0.43  0.54 0.44
AGAH | 0.76  0.61 | 0.79 | 0.62 | 0.80 0.62 0.81 | 0.63 | 0.64  0.44 0.67 | 0.44 | 0.68 | 0.45 0.68 0.46
SSAH | 0.64 | 0.59 | 0.67 | 0.60 | 0.67 0.52 | 0.69 | 0.62 | 0.49 0.42  0.50 | 0.42 | 0.53 | 0.43 | 0.54 0.44
DCMH | 0.75 | 0.62 | 0.75 | 0.62 | 0.76 | 0.63 | 0.77 | 0.63 | 0.63 | 0.43 0.64 | 0.44 | 0.65 | 0.44 0.66 0.45
DSAH | 0.68 0.9 | 0.70 | 0.60 | 0.71 | 0.61 | 0.72 | 0.62 | 0.58 | 0.42 0.60 | 0.42 | 0.61 | 0.43  0.61 0.44
@ CL refers to code length. Here, M is set to 500 and T is set to 800.

4.2 Evaluation

BACH is a black-box adversarial attack on DCMHR models. To evaluate the
effectiveness and efficiency of BACH, we design experiments to answer the fol-
lowing three research questions:



450 J. Zhang et al.

— RQ1: Is BACH effective to attack classical deep cross-modal hamming
retrieval models for image-to-text and image-to-image retrieval tasks?

— RQ2: Does the number of samples of the query dataset used to construct
triples affect the attack performance?

— RQ3: How does BACH perform compared with existing white-box and black-
box attacking methods?

Table 3. The attack performance in term of mAP on the state-of-the-art DCMHR
models for image-to-image retrieval task, based on CIFAR10 set

Dataset CIFAR10

Code Length 12 24 36 48
Method REG | ATK | REG | ATK | REG | ATK | REG | ATK
SDH 0.46 | 0.10 | 0.64 | 0.11 | 0.66 | 0.12 | 0.67 | 0.14
DSH 0.62 | 0.10 | 0.66 | 0.13 | 0.67 | 0.14 | 0.68 | 0.14
ADSH 0.88 | 0.15 | 0.88 | 0.15 | 0.87 | 0.15 | 0.87 | 0.15
DSDH 0.73 | 0.14 | 0.75 | 0.15 | 0.75 | 0.15 | 0.75 | 0.16

@ Here, M is set to 500, T is set to 800.

Firstly, we show the performance of BACH on several retrieval models. To
verify the ability of the attack, we re-produce 7 state-of-the-art DCMHR models
for image-to-text retrieval task, including DJSRH [32], AGAH [28], SSAH [1§],
DCMH [7], DSAH [22]|, PRDH [38] and CMHH [2]. We construct six state-of-the-
art DCMHR models for image-to-image data retrieval task, including DSH [24],
DIHN [35], DSDH [21], ADSH [15], HMH [39] and SDH [30]. In addition, to
evaluate the attack performance of the adversarial samples with different hash
code lengths, for the cross-modal retrieval task, we use 16, 32, 64, and 128
as the length, respectively. Moreover, for image-to-image retrieval tasks, there
are two dataset, where the CIFARI10 dataset takes values of 12, 24, 36, and
48 for hash code length, and the NUS-WIDE dataset takes values of 8, 16,
24, and 32 for hash code length. We attacked the above retrieval models, and
the comparison between the regular retrieval performance and the performance
after being attacked in terms of the mAP/NDCG score. The attack results on the
DCMHR models for image-to-text retrieval task are shown in Tables 1 and 2. The
attack results of image-to-image retrieval task are in Tables 3 and 4. Furthermore,
due to the special requirements of the HMH method for hash code length, 8-bit
and 24-bit hash code lengths do not satisfy the HMH requirements, so we do
not perform 8-bit and 24-bit attacks on CIFAR10 and NUS-WIDE for HMH.
BACH produces adversarial samples that effectively degrade the performance of
all the above well-trained retrieval models, which means that all our attacks are
successful, demonstrating the lack of robustness of these existing deep retrieval
models to small adversarial perturbations.

To construct a triplet of samples, we need to query the hash codes of M
samples. Different M will led to different attack performances, so we will take
M as 200, 300, 500, and 1000 respectively, to perform the attack. The com-
parison of the attack performance on MIRFlickr-25K, NUS-WIDE is shown
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Table 4. The attack performance in terms of mAP and NDCG on the state-of-the-art
DCMHR models for image-to-image retrieval task, based on NUS-WIDE set

Dataset NUS-WIDE (mAP) NUS-WIDE (NDCG)

CL 8 16 24 32 8 16 24 32
Method |REG|ATK REG |ATK | REG  ATK | REG|ATK REG ATK | REG|ATK | REG |ATK REG  ATK
DSH 0.66 | 0.24 | 0.69 | 0.26 | 0.70  0.27 0.71 | 0.27 | 0.45 0.26 | 0.45 | 0.26  0.45 | 0.27 | 0.45 0.27

ADSH | 0.80 | 0.27 | 0.85 | 0.28 | 0.86 0.29  0.87 | 0.29 | 0.51 0.28 | 0.59 | 0.28 | 0.61 | 0.28 | 0.63 | 0.29
DIHN 0.74 | 0.25 | 0.79 | 0.27 | 0.81 | 0.27 | 0.80 | 0.27 | 0.48 | 0.26 | 0.51 | 0.27 0.58 | 0.27 | 0.58 | 0.29
DSDH | 0.77 | 0.26 | 0.76 | 0.26 | 0.80 0.27 | 0.80 | 0.28 | 0.50 0.28 | 0.55  0.28  0.59 | 0.30 | 0.59 0.23
HMH - - 074026 - - |o78027 - | - |053/028 - | - |052 028
@ CL refers to code length. Here, M is set to 500 and T is set to 800.

Table 5. Comparison of the attack performance for different Adversarial Queries (M)
in terms of mAP scores, the code length is set to 32 bits, T is set to 800

. . MIRFlickr-25K NUS-WIDE
Tasks | Adversarial Queries

DCMH | PRDH | SSAH | CMHH  DCMH | PRDH | SSAH | CMHH
REG 0.74 | 078 | 068 | 075 @ 0.66 0.64 051 0.60
200 0.70 | 0.68 | 0.66 | 0.64 | 059 | 0.52 | 0.44 | 0.46
I=T oo 300 0.65 | 0.64 | 0.64 | 063 | 050 | 046 | 0.42 | 0.44
500 062 | 0.60 | 0.61 | 0.61 | 044 | 0.42 | 0.41 | 0.43
1000 062 | 061 | 062 | 061 | 045 | 041 | 042 | 043

@ I — T denotes retrieval text using an adversarial image query.

in Table5 (mAP). The mAP scores decreases as M increases, so the attack
performance gradually improves. However, we find that the attack performance
slightly decreases when the M increases from 500 to 1000, which may be due
to some inaccurate information obtained when querying the target model, so
high-quality query samples will help to improve the query efficiency and attack
performance.

Meanwhile, we compare the impact of different iterative numbers, T', on the
attack performance during adversarial sample generation. Here we fix M to
500, and the attack performance comparison on the baseline databases is shown
in Table 6. We find the retrieval performance degrades gradually as the number
of iterations becomes larger, meaning the attack performance becomes better.
However, when T grows from 500 to 800, the attack performance increase is
insignificant. Since there is often a limit on the number of queries, we consider
T takes 800 as the optimal value.

Last, we compare BACH performance to white-box and black-box attack
methods, and the results are shown in Table7. CMLA [20] is a work to attack
DCMHR models in a white-box setting. In contrast, AACH [19] attacks DCMHR
models in a black-box setting. Therefore, AACH does not require a priori knowl-
edge, such as the structure of the target network. However, AACH requires
constructing a surrogate model, which we do not need. We attack by directly
estimating the gradient of the loss function. We compare the attack performance
of the three methods on top of two different dataset according to [19]. CMLA
achieves the best performance, which is attributed to the fact that CMLA has
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Table 6. Comparison of the attack performance for different iteration (T") in terms of
mAP scores, the code length is set to 32 bits, M is set to 500.

MIRFlickr-25K NUS-WIDE
DCMH | PRDH | SSAH | CMHH | DCMH | PRDH | SSAH | CMHH
REG 0.74 0.78 0.68 0.75 0.66 0.64 0.51 0.60
300 0.66 0.63 0.60 0.69 0.46 0.50 0.44 0.55
I —-T BACH 500 0.63 0.60 0.62 0.62 0.44 0.45 0.41 0.45
800 | 0.62 0.60 | 0.61 0.61 0.44 0.42 | 0.41 0.43
¢ I — T denotes retrieval text using an adversarial image query.

Tasks | Iteration

Table 7. Comparison of the attack performance of BACH, CMLA and AACH in terms
of mAP scores on different dataset, the code length is 32 bits.

MIRFlickr-25K NUS-WIDE
DCMH | PRDH | SSAH | CMHH | DCMH | PRDH | SSAH | CMHH
REG 0.74 0.78 | 0.68 0.75 0.66 0.64  0.51 0.60
I —T| CMLA 0.52 0.60 | 0.60 0.56 0.46 0.40 | 0.36 0.33
AACH 0.63 0.62 | 0.56 0.65 0.44 0.50 | 0.40 0.41

BACH 0.62 0.61 0.61 0.58 0.44 0.49 0.41 0.40
@ I — T denotes retrieval text using an adversarial image query.

Tasks | Methods

all the prior knowledge of the target model as a white-box attack. However, the
attack performance of our BACH is more potent than AACH on both benchmark
dataset. It validates the effectiveness of our approach.

5 Related Work

5.1 Deep Cross-Modal Hashing

In order to measure the semantic similarity between samples of different modal-
ities and maintain the similarity between data samples, the features of data
samples belonging to different modalities are often mapped into a common
subspace. As shown in Fig.3, Hash codes learning and retrieval tasks are all
based on this common subspace. For example, Inter-Media Hashing [31] uses
inter-modal and intra-modal consistency as benchmarks to construct a common
Hamming space and introduces regularized linear regression into the hashing
process. Latent Semantic Sparse Hashing [43] the latent space through sparse
coding and matrix factorization and then fuses the features of different modal
data into a unified hash code. The Composite Correlation Quantization [27]
uses the maximum mapping method to construct a common subspace. Collective
Matrix Factorization Hashing [5] and Supervised Collective Matrix Factorization
Hashing [6] exploit collaborative matrix factorization to learn hash codes from
different modalities. Based on common subspace learning, adding label infor-
mation can effectively improve the performance of cross-modal retrieval models,
and such supervised models can generate hash codes that preserve semantics.
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The Semantic Correlation Maximization [42] method proposed earlier attempts
to integrate label information into the learning process to obtain a similarity
matrix. Semantics Preserving Hashing [23] first used a distribution function to
formulate the hashing process, converted the semantic relationship contained in
the label information into a probability distribution, then trained the model by
minimizing the Kullback-Leibler divergence.

I Heterogeneity gap Hash Function

The sun rorat
appeared on aircral
the horizon. It
was day sky

Ahot air
balloon

Hamming Space

Fig. 3. Regular cross-modal Hamming retrieval

Meanwhile, DNN can enhance the feature learning capability for different
modal data, which yields deep cross-modal hashing using DNN as a feature
extraction network. Typical approaches are Deep Cross-Modal Hashing [14] and
Pairwise Relation Guided Deep Hashing [38], both of which use deep convolu-
tional networks and fully connected networks to extract the image and text fea-
tures, respectively, while adding semantic labeling information to maintain the
original semantic similarity between samples. The Deep Visual-Semantic Hash-
ing [3] method further uses Long Short Term Memory (LSTM) [10] to learn
textual information in the form of sentences. Self-Supervised Adversarial Hash-
ing [18] proposes to capture semantic features from different modalities further
using generative adversarial networks and proposes labeling networks to generate
hash codes of label vectors.

5.2 Adversarial Attacks

Szegedy et al. were the first to propose the concept of adversarial sample [5], and
they found that small perturbations that are not sensitive to the human visual
system can make the neural network too sensitive to produce false recognition.
Subsequent researchers have proposed many more powerful and effective meth-
ods for attack generation. The existing adversarial attacks can be divided into
two main categories: white-box attacks and black-box attacks. White-box attacks
refer to the information of the target model is fully accessible, and the most com-
monly used white-box attacks are fast gradient symbolic method (FGSM) [§]
and projected gradient descent method (PGD) [23]. Although the performance
of white-box attacks is relatively high, obtaining specific information about the
target model in the real world is complicated. The black-box attack can only
obtain the model’s output or even the information about the model is completely
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unknown. This setting increases the difficulty of attacks, but it is more practi-
cal than white-box. Research shows that, black-box attacks based on gradient
estimation are already close to the performance of the best white-box attacks.

6 Conclusion

This paper presents BACH, a learning-based adversarial attack method aimed
at fooling deep cross-modal retrieval models on hamming space in a black-
box setting. BACH consists of three parts: first, it calculates the hamming
distance between samples through cross-modal querying; second, it constructs
cross-modal triplets (i.e., original sample, positive sample, and negative sample)
for each image based on the hamming distance; and third, it learns to generate
adversarial samples by pulling the negative samples close and pushing away the
positive sample, using a random gradient-free gradient estimation method to
reduce the number of queries. BACH was tested on 3 popular dataset and 13
state-of-the-art deep cross-modal hamming retrieval models, including 6 mod-
els for image-to-image retrieval and 7 models for image-to-text retrieval. The
experiments show that BACH can effectively attack existing retrieval models
and has comparable attack performance to the white-box attack method (i.e.,
CMLA) and the black-box attack method (i.e., AACH). The results highlight the
unreliability of current cross-modal hamming retrieval models, as well-designed
perturbations can easily mislead them in practice. Thus, BACH can serve as a
baseline for evaluating the robustness of cross-modal hamming retrieval models,
and call for advanced method to enhance the robustness of cross-modal retrieval
models in the future.
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